Skip to main content

An O(logn) Approximation Ratio for the Asymmetric Traveling Salesman Path Problem

  • Conference paper
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX 2006, RANDOM 2006)

Abstract

Given an arc-weighted directed graph G = (V,A,ℓ) and a pair of vertices s,t, we seek to find an s-twalk of minimum length that visits all the vertices in V. If ℓ satisfies the asymmetric triangle inequality, the problem is equivalent to that of finding an s-tpath of minimum length that visits all the vertices. We refer to this problem as ATSPP. When s = t this is the well known asymmetric traveling salesman tour problem (ATSP). Although an O(logn) approximation ratio has long been known for ATSP, the best known ratio for ATSPP is \(O(\sqrt{n})\). In this paper we present a polynomial time algorithm for ATSPP that has approximation ratio of O(logn). The algorithm generalizes to the problem of finding a minimum length path or cycle that is required to visit a subset of vertices in a given order.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahuja, R., Magnanti, T., Orlin, J.: Network Flows. Prentice Hall, Englewood Cliffs (1993)

    Google Scholar 

  2. Bachrach, A., Chen, K., Harrelson, C., Rao, S., Shah, A.: Lower Bounds for Maximum Parsimony with Gene Order Data. In: McLysaght, A., Huson, D.H. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3678, pp. 1–10. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Bläser, M.: A New Approximation Algorithm for the Asymmetric TSP with Triangle Inequality. In: Proc. of ACM-SIAM SODA, pp. 638–645 (2002)

    Google Scholar 

  4. Charikar, M., Motwani, R., Raghavan, P., Silverstein, C.: Constrained TSP and lower power computing. In: Rau-Chaplin, A., Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 1997. LNCS, vol. 1272, pp. 104–115. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  5. Charikar, M., Goemans, M., Karloff, H.: On the Integrality Ratio for Asymmetric TSP. In: Proc. of IEEE FOCS, pp. 101–107 (2004)

    Google Scholar 

  6. Christofides, N.: Worst-case analysis of a new heuristic for the traveling salesman problem. Technical report, GSIA, CMU (1976)

    Google Scholar 

  7. Chvatal, V.: A greedy heuristic for the set-covering problem. Math. of Oper. Res. 4, 233–235 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  8. Frieze, A., Galbiati, G., Maffioli, M.: On the worst-case performance of some algorithms for the asymmetric traveling salesman problem. Networks 12, 23–39 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gutin, G., Punnen, A.P. (eds.): Traveling Salesman Problem and Its Variations. Springer, Berlin (2002)

    MATH  Google Scholar 

  10. Guttmann-Beck, N., Hassin, R., Khuller, S., Raghavachari, B.: Approximation Algorithms with Bounded Performance Guarantees for the Clustered Traveling Salesman Problem. Algorithmica 28, 422–437 (2000); Preliminary version in: Proc. of FSTTCS (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hoogeveen, J.: Analysis of Christofides heuristic: Some paths are more difficult than cycles. Operations Research Letters 10, 291–295 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kaplan, H., Lewenstein, M., Shafir, N., Sviridenko, M.: Approximation Algorithms for Asymmetric TSP by Decomposing Directed Regular Multidigraphs. Journal of ACM 52, 602–626 (2005)

    Article  Google Scholar 

  13. Kleinberg, J., Williamson, D.: Unpublished note (1998)

    Google Scholar 

  14. Lam, F., Newman, A.: Traveling Salesman Path Problems (manuscript April 2005)

    Google Scholar 

  15. Lawler, E., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D. (eds.): The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. John Wiley & Sons Ltd., Chichester (1985)

    MATH  Google Scholar 

  16. Williamson, D.: Lecture Notes on Approximation Algorithms. IBM Research Report RC 21273 (February 1999)

    Google Scholar 

  17. Young, N., Tarjan, R., Orlin, J.: Faster parametric shortest path and minimum balance algorithms. Networks 21(2), 205–221 (1991)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chekuri, C., Pál, M. (2006). An O(logn) Approximation Ratio for the Asymmetric Traveling Salesman Path Problem. In: Díaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2006 2006. Lecture Notes in Computer Science, vol 4110. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11830924_11

Download citation

  • DOI: https://doi.org/10.1007/11830924_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38044-3

  • Online ISBN: 978-3-540-38045-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics