Advertisement

A Heuristic Detector Generation Algorithm for Negative Selection Algorithm with Hamming Distance Partial Matching Rule

  • Wenjian Luo
  • Zeming Zhang
  • Xufa Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4163)

Abstract

Negative selection algorithm is one of the most important algorithms inspired by biological immune system. In this paper, a heuristic detector generation algorithm for negative selection algorithm is proposed when the partial matching rule is Hamming distance. Experimental results show that this novel detector generation algorithm has a better performance than traditional detector generation algorithm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hart, E., Timmis, J.I.: Application Areas of AIS: The Past, The Present and The Future. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 483–497. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Dasgupta, D., Ji, Z., et al.: Artificial Immune System(AIS) Research in the Last Five Years. In: Proc. the IEEE Congress on Evolutionary Computation (CEC), Canberra, Australia, pp. 123–130 (2003)Google Scholar
  3. 3.
    de Castro, L.N., Timmis, J.: Artificial Immune Systems: a New Computational Intelligence Approach. Springer, London (2002)zbMATHGoogle Scholar
  4. 4.
    Taraknaov, A.O., Skormin, V.A., Sokolova, S.P.: Immunocomputing: Principles and Applications. Springer, Heidelberg (2003)Google Scholar
  5. 5.
    Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-nonself Discrimination in a Computer. In: Proc. the 1994 IEEE Symposium on Research in Security and Privacy, Los Alamitos, CA, pp. 202–212 (1994)Google Scholar
  6. 6.
    Ayara, M., Timmis, J., de Lemos, L.N., de Castro, R., Duncan, R.: Negative Selection: How to Generate Detectors. In: Timmis, J., Bentley, P.J. (eds.) Proc. the First International Conference on Artificial Immune Systems, pp. 89–98 (2002)Google Scholar
  7. 7.
    D’haeseleer, P., Forrest, S., Helman, P.: An Immunological Approach to Change Detection: Algorithms, Analysis and Implications. In: Proc. the 1996 IEEE Symposium on Security and Privacy, Los Alamitos, CA, pp. 110–119 (1996)Google Scholar
  8. 8.
    Balthrop, J., Esponda, F., Forrest, S., Glickman, M.: Coverage and Generatization in an Artificial Immune System. In: Proc. the 2002 Genetic and Evolutionary Computation Conference, pp. 3–10 (2002)Google Scholar
  9. 9.
    Ji, Z., Dasgupata, D.: Augmented Negative Selection Algorithm with Variable-Coverage Detectors. In: Proc. Congress on Evolutionary Computation, CEC, vol. 1, pp. 1081–1088 (2004)Google Scholar
  10. 10.
    Ji, Z., Dasgupata, D.: Real-Valued Negative Selection Algorithm with Variable-Sized Detectors. In: Proc. the 2004 Genetic and Evolutionary Computation Conference, Seattle, Washington, USA, pp. 287–298 (2004)Google Scholar
  11. 11.
    Stibor, T., Bayarou, K.M., Eckert, C.: An Investigation of R-Chunk Detector Generation on Higher Alphabets. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 299–307. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Stibor, T., Mohr, P., Timmis, J., Eckert, C.: Is Negative Selection Appropriate for Anomaly Detection? In: Proc. the 2005 Genetic and Evolutionary Computation Conference (GECCO), Washington DC, USA, pp. 321–328. ACM Press, New York (2005)CrossRefGoogle Scholar
  13. 13.
    Luo, W., Wang, X., et al.: Evolutionary Negative Selection Algorithms for Anomaly Detection. In: Proc. the 8th Joint Conference on Information Sciences (JCIS 2005). 7th International Conference on Computational Intelligence and Natural Computing (CINC 2005), held in conjunction with the 8th Joint Conference on Information Sciences (JCIS 2005), Salt Lake City, Utah, pp. 440–445 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Wenjian Luo
    • 1
  • Zeming Zhang
    • 1
  • Xufa Wang
    • 1
  1. 1.Department of Computer Science and TechnologyUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations