Skip to main content

Randomized Self-stabilizing Algorithms for Wireless Sensor Networks

  • Conference paper
Self-Organizing Systems (EuroNGI 2006, IWSOS 2006)

Abstract

Wireless sensor networks (WSNs) pose challenges not pre- sent in classical distributed systems: resource limitations, high failure rates, and ad hoc deployment. The lossy nature of wireless communication can lead to situations, where nodes lose synchrony and programs reach arbitrary states. Traditional approaches to fault tolerance like replication or global resets are not feasible. In this work, the concept of self-stabilization is applied to WSNs. The majority of self-stabilizing algorithms found in the literature is based on models not suitable for WSNs: shared memory model, central daemon scheduler, unique processor identifiers, and atomicity. This paper proposes problem-independent transformations for algorithms that stabilize under the central daemon scheduler such that they meet the demands of a WSN. The transformed algorithms use randomization and are probabilistically self-stabilizing. This work allows to utilize many known self-stabilizing algorithms in WSNs. The proposed transformations are evaluated using simulations and a real WSN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Turau, V., Weyer, C., Witt, M.: Analysis of a Real Multi-hop Sensor Network Deployment: The Heathland Experiment. In: 3rd Int. Conf. on Networked Sensing Systems (INSS 2006), pp. 6–13 (2006)

    Google Scholar 

  2. Dijkstra, E.: Self stabilizing systems in spite of distributed control. Communications of the ACM 17(11), 643–644 (1974)

    Article  MATH  Google Scholar 

  3. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  4. Schneider, M.: Self-stabilization. ACM Comput. Surv. 25(1), 45–67 (1993)

    Article  Google Scholar 

  5. Gradinariu, M., Tixeuil, S.: Self-stabilizing vertex coloration and arbitrary graphs. In: Butelle, F. (ed.) OPODIS, pp. 55–70 (2000)

    Google Scholar 

  6. Karaata, M.: A self-stabilizing algorithm for finding articulation points. Theoretical and Mathematical Aspects of Computer Science 10(1), 33–46 (1999)

    MathSciNet  Google Scholar 

  7. Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: A self-stabilizing distributed algorithm for minimal total domination in an arbitrary system graph. In: IPDPS, pp. 240–243. IEEE Computer Society, Los Alamitos (2003)

    Google Scholar 

  8. Chaudhuri, P.: A self-stabilizing algorithm for minimum-depth search of graphs. Information Sciences 118(1-4), 241–249 (1999)

    Article  MathSciNet  Google Scholar 

  9. Higham, L., Liang, Z.: Self-stabilizing minimum spanning tree construction on message-passing networks. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 194–208. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Beauquier, J., Datta, A.K., Gradinariu, M., Magniette, F.: Self-stabilizing local mutual exclusion and daemon refinement. Chicago Journal of Theoretical Computer Science 2002(1) (2002)

    Google Scholar 

  11. Shukla, S., Rosenkrantz, D., Ravi, S.: Observations on self-stabilizing graph algorithms for anonymous networks. In: 2nd Workshop on Self-Stabilizing Systems, pp. 7.1–7.15 (1995)

    Google Scholar 

  12. Mizuno, M., Nesterenko, M.: A transformation of self-stabilizing serial model programs for asynchronous parallel computing environments. Inf. Process. Lett. 66(6), 285–290 (1998)

    Article  MATH  Google Scholar 

  13. Herman, T.: Models of self-stabilization and sensor networks. In: IWDC 2003. LNCS, vol. 2918, pp. 205–214. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Hedetniemi, S., Hedetniemi, S., Jacobs, D., Srimani, P.: Self-stabilizing algorithms for minimal dominating sets and maximal independent sets. Comput. Math. Appl. 46(5–6), 805–811 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Römer, K., Blum, P., Meier, L.: Time synchronization and calibration in wireless sensor networks. In: Stojmenovic, I. (ed.) Handbook of Sensor Networks: Algorithms and Architectures, pp. 199–237. John Wiley & Sons, Chichester (2005)

    Google Scholar 

  16. ScatterWeb (2006), http://www.scatterweb.net

  17. Kulkarni, S.S., Arumugam, M.U.: Transformations for Write-All-with-Collision Model. In: Papatriantafilou, M., Hunel, P. (eds.) OPODIS 2003. LNCS, vol. 3144, pp. 184–197. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  18. Herman, T., Tixeuil, S.: A Distributed TDMA Slot Assignment Algorithm for Wireless Sensor Networks. In: Nikoletseas, S.E., Rolim, J.D.P. (eds.) ALGOSENSORS 2004. LNCS, vol. 3121, pp. 45–58. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  19. Frank, C., Römer, K.: Algorithms for generic role assignment in wireless sensor networks. In: 3rd ACM Conf. on Embedded Networked Sensor Systems (2005)

    Google Scholar 

  20. Kakugawa, H., Mizuno, M., Nesterenko, M.: Development of self-stabilizing distributed algorithms using transformation: case studies. In: 3rd Workshop on Self-Stabilizing Systems, pp. 16–30 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Turau, V., Weyer, C. (2006). Randomized Self-stabilizing Algorithms for Wireless Sensor Networks. In: de Meer, H., Sterbenz, J.P.G. (eds) Self-Organizing Systems. EuroNGI IWSOS 2006 2006. Lecture Notes in Computer Science, vol 4124. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11822035_8

Download citation

  • DOI: https://doi.org/10.1007/11822035_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37658-3

  • Online ISBN: 978-3-540-37669-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics