Skip to main content

Dimension Characterizations of Complexity Classes

  • Conference paper
Mathematical Foundations of Computer Science 2006 (MFCS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4162))

Abstract

We use derandomization to show that sequences of positive pspace-dimension – in fact, even positive Δ\(^{\rm p}_{\rm k}\)-dimension for suitable k – have, for many purposes, the full power of random oracles. For example, we show that, if S is any binary sequence whose Δ\(^{\rm p}_{\rm 3}\)-dimension is positive, then BPP ⊆ PS and, moreover, every BPP promise problem is PS-separable. We prove analogous results at higher levels of the polynomial-time hierarchy.

The dimension-almost-class of a complexity class \(\mathcal{C}\), denoted by dimalmost-\(\mathcal{C}\), is the class consisting of all problems A such that \(A \in \mathcal{C}^S\) for all but a Hausdorff dimension 0 set of oracles S. Our results yield several characterizations of complexity classes, such as BPP = dimalmost-P and AM = dimalmost-NP, that refine previously known results on almost-classes. They also yield results, such as Promise-BPP = almost-P-Sep = dimalmost-P-Sep, in which even the almost-class appears to be a new characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allender, E.: When worlds collide: Derandomization, lower bounds, and kolmogorov complexity. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 1–15. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Allender, E., Buhrman, H., Koucký, M., van Melkebeek, D., Ronneburger, D.: Power from random strings. In: Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science, pp. 669–678 (2002); SIAM Journal on Computing (to appear)

    Google Scholar 

  3. Allender, E., Strauss, M.: Measure on small complexity classes with applications for BPP. In: Proceedings of the 35th Symposium on Foundations of Computer Science, pp. 807–818 (1994)

    Google Scholar 

  4. Balcázar, J.L., Díaz, J., Gabarró, J.: Structural Complexity I, 2nd edn. Springer, Berlin (1995)

    Google Scholar 

  5. Bennett, C.H., Gill, J.: Relative to a random oracle A, PA ≠ NPA ≠ co − NPA with probability 1. SIAM Journal on Computing 10, 96–113 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  6. Buhrman, H., Fortnow, L.: One-sided versus two-sided randomness. In: Proceedings of the sixteenth Symposium on Theoretical Aspects of Computer Science, pp. 100–109 (1999)

    Google Scholar 

  7. Chomsky, N., Miller, G.A.: Finite state languages. Information and Control 1(2), 91–112 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  8. Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications, 2nd edn. Wiley, Chichester (2003)

    Book  MATH  Google Scholar 

  9. Fortnow, L.: Comparing notions of full derandomization. In: Proceedings of the 16th IEEE Conference on Computational Complexity, pp. 28–34 (2001)

    Google Scholar 

  10. Grollman, J., Selman, A.: Complexity measures for public-key cryptosystems. SIAM J. Comput. 11, 309–335 (1988)

    Article  Google Scholar 

  11. Hausdorff, F.: Dimension und äusseres Mass. Mathematische Annalen 79, 157–179 (1919)

    Article  MathSciNet  Google Scholar 

  12. Hitchcock, J.M.: Effective fractal dimension: foundations and applications. PhD thesis, Iowa State University (2003)

    Google Scholar 

  13. Hitchcock, J.M.: Hausdorff dimension and oracle constructions. Theoretical Computer Science 355(3), 382–388 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hitchcock, J.M., Lutz, J.H., Mayordomo, E.: The fractal geometry of complexity classes. SIGACT News 36(3), 24–38 (2005)

    Article  Google Scholar 

  15. Hitchcock, J.M., Vinodchandran, N.V.: Dimension, entropy rates, and compression. Journal of Computer and System Sciences 72(4), 760–782 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Impagliazzo, R., Wigderson, A.: P = BPP if E requires exponential circuits: Derandomizing the XOR lemma. In: Proceedings of the 29th Symposium on Theory of Computing, pp. 220–229 (1997)

    Google Scholar 

  17. Kuich, W.: On the entropy of context-free languages. Information and Control 16(2), 173–200 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lutz, J.H.: A pseudorandom oracle characterization of BPP. SIAM Journal on Computing 22(5), 1075–1086 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lutz, J.H.: Dimension in complexity classes. SIAM Journal on Computing 32, 1236–1259 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lutz, J.H.: Effective fractal dimensions. Mathematical Logic Quarterly 51, 62–72 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Martin-Löf, P.: The definition of random sequences. Information and Control 9, 602–619 (1966)

    Article  MathSciNet  Google Scholar 

  22. Mayordomo, E.: Effective Hausdorff dimension. In: Proceedings of Foundations of the Formal Sciences III, pp. 171–186. Kluwer Academic Publishers, Dordrecht (2004)

    Google Scholar 

  23. Moser, P.: Relative to P promise-BPP equals APP. Technical Report TR01-68, Electronic Colloquium on Computational Complexity (2001)

    Google Scholar 

  24. Moser, P.: Random nondeterministic real functions and Arthur Merlin games. Technical Report TR02-006, ECCC (2002)

    Google Scholar 

  25. Nisan, N., Wigderson, A.: Hardness vs randomness. Journal of Computer and System Sciences 49, 149–167 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  26. Staiger, L.: Kolmogorov complexity and Hausdorff dimension. Information and Computation 103, 159–194 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  27. Staiger, L.: A tight upper bound on Kolmogorov complexity and uniformly optimal prediction. Theory of Computing Systems 31, 215–229 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  28. Wilson, C.B.: Relativized circuit complexity. Journal of Computer and System Sciences 31, 169–181 (1985)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gu, X., Lutz, J.H. (2006). Dimension Characterizations of Complexity Classes. In: Královič, R., Urzyczyn, P. (eds) Mathematical Foundations of Computer Science 2006. MFCS 2006. Lecture Notes in Computer Science, vol 4162. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11821069_41

Download citation

  • DOI: https://doi.org/10.1007/11821069_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37791-7

  • Online ISBN: 978-3-540-37793-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics