Skip to main content

Toward the Eigenvalue Power Law

  • Conference paper
Mathematical Foundations of Computer Science 2006 (MFCS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4162))

Abstract

Many graphs arising in various real world networks exhibit the so called “power law” behavior, i.e., the number of vertices of degree i is proportional to i  − β, where β> 2 is a constant (for most real world networks β ≤ 3). Recently, Faloutsos et al. [18] conjectured a power law distribution for the eigenvalues of power law graphs. In this paper, we show that the eigenvalues of the Laplacian of certain random power law graphs are close to a power law distribution.

First we consider the generalized random graph model G(d) =(V,E), where d=(d 1, ..., d n ) is a given sequence of expected degrees, and two nodes v i , v j V share an edge in G(d) with probability p i, j =d i d j /\(\sum^{n}_{k=1}\) d k , independently [9]. We show that if the degree sequence d follows a power law distribution, then some largest Θ(n 1/β) eigenvalues of L(d) are distributed according to the same power law, where L(d) represents the Laplacian of G(d). Furthermore, we determine for the case β ∈(2,3) the number of Laplacian eigenvalues being larger than i, for any i = ω(1), and compute how many of them are in some range (i,(1+ε) i), where i=ω(1) and ε>0 is a constant. Please note that the previously described results are guaranteed with probability 1–o(1/n).

We also analyze the eigenvalues of the Laplacian of certain dynamically constructed power law graphs defined in [2,3], and discuss the applicability of our methods in these graphs.

The research was performed while the author visited the Department of Mathematics at University of California, San Diego. Partly supported by the German Research Foundation under contract EL-399/1-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achlioptas, D., McSherry, F.: Fast computation of low-ranked matrix approximation. In: Proc. of STOC 2001, pp. 611–618 (2001)

    Google Scholar 

  2. Aiello, W., Chung, F.R.K., Lu, L.: Random evolution in massive graphs. In: Proc. of FOCS, pp. 510–519 (2001)

    Google Scholar 

  3. Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286 (1999)

    Google Scholar 

  4. Bollobás, B.: Random Graphs. Academic Press, London (1985)

    MATH  Google Scholar 

  5. Bollobás, B., Riordan, O., Spencer, J., Tusnády, G.: The degree sequence of a scale-free random graph process. Random Structures and Algorithms 18, 279–290 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Callaway, D., Hopcroft, J., Kleinberg, J., Newman, M., Strogatz, S.: Are randomly grown graphs really random? Physical Review E 64, 51902 (2001)

    Article  Google Scholar 

  7. Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Stat. 23, 493–507 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chung, F.R.K.: Spectral Graph Theory. CBMS Regional conference series in mathematics, vol. 92. American Mathematical Society (1997)

    Google Scholar 

  9. Chung, F.R.K., Lu, L.: Connected components in random graphs with given expected degre sequences. Annals of Combinatorics 6, 125–145 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chung, F.R.K., Lu, L.: The average distances in random graphs with given expected degrees. Internet Mathematics 1, 91–114 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chung, F.R.K., Lu, L., Vu, V.: Eigenvalues of random power law graphs. Annals of Combinatorics 7, 21–33 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chung, F.R.K., Lu, L., Vu, V.: The spectra of random graphs with given expected degrees. Proceedings of National Academy of Sciences 100, 6313–6318 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cvetkovic, D.M., Doob, M., Sachs, H.: Spectra of Graphs, 3rd edn. Johann Ambrosius Barth (1995)

    Google Scholar 

  14. Diekmann, R., Frommer, A., Monien, B.: Efficient schemes for nearest neighbor load balancing. Parallel Computing 25(7), 789–812 (1999)

    Article  MathSciNet  Google Scholar 

  15. Elsässer, R., Monien, B., Preis, R.: Diffusion schemes for load balancing on heterogeneous networks. Theory of Computing Systems 35, 305–320 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Erdős, P., Rényi, A.: On random graphs I. Publ. Math. Debrecen 6, 290–297 (1959)

    MathSciNet  Google Scholar 

  17. Erdős, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hungar. Acad. Sci. 5, 17–61 (1960)

    Google Scholar 

  18. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology. Comput. Commun. Rev. 29, 251–263 (1999)

    Article  Google Scholar 

  19. Belongie, S., Fowlkes, C.C., Chung, F., Malik, J.: Spectral partitioning with indefinite kernels using the nyström extension. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 531–542. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  20. Gilbert, E.N.: Random graphs. Ann. Math. Statist. 30, 1141–1144 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  21. Godsil, C., Royle, G.: Algebraic Grapg Theory. Springer, Heidelberg (2001)

    Google Scholar 

  22. Haemers, W.: Interlacing eigenvalues and graphs. Linear Algebra Appl. 227/228, 593–616 (1995)

    Article  MathSciNet  Google Scholar 

  23. Hagerup, T., Rüb, C.: A guided tour of Chernoff bounds. Information Processing Letters 36(6), 305–308 (1990)

    Article  Google Scholar 

  24. Jeong, H., Tomber, B., Albert, R., Oltvai, Z., Barabási, A.L.: The large-scale organization of metabolic networks. Nature 407, 378–382 (2000)

    Google Scholar 

  25. Kleinberg, J.: Authoritive sources in a hyperlinked environment. In: Proc. of SODA 1999 (1999)

    Google Scholar 

  26. Kleinberg, J.M., Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.S.: The web as a graph: Measurements, models, and methods. In: Asano, T., Imai, H., Lee, D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 1–17. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  27. Mihail, M., Papadimitriou, C.: On the eigenvalue power law. In: Rolim, J.D.P., Vadhan, S.P. (eds.) RANDOM 2002. LNCS, vol. 2483, pp. 254–262. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  28. Newman, M.: The structure and function of complex networks. SIAM Review 45, 167–256 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Wigner, E.P.: On the distribution of the roots of certain symmetric matrices. The Annals of Mathematics 67, 325–327 (1958)

    Article  MathSciNet  Google Scholar 

  30. Wilkinson, J.H.: The Algebraic Eigenvalue Problem. Oxford University Press, Oxford (1965)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Elsässer, R. (2006). Toward the Eigenvalue Power Law. In: Královič, R., Urzyczyn, P. (eds) Mathematical Foundations of Computer Science 2006. MFCS 2006. Lecture Notes in Computer Science, vol 4162. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11821069_31

Download citation

  • DOI: https://doi.org/10.1007/11821069_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37791-7

  • Online ISBN: 978-3-540-37793-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics