Skip to main content

Strategy Improvement for Stochastic Rabin and Streett Games

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4137))

Abstract

A stochastic graph game is played by two players on a game graph with probabilistic transitions. We consider stochastic graph games with ω-regular winning conditions specified as Rabin or Streett objectives. These games are NP-complete and coNP-complete, respectively. The value of the game for a player at a state s given an objective Φ is the maximal probability with which the player can guarantee the satisfaction of Φ from s. We present a strategy-improvement algorithm to compute values in stochastic Rabin games, where an improvement step involves solving Markov decision processes (MDPs) and nonstochastic Rabin games. The algorithm also computes values for stochastic Streett games but does not directly yield an optimal strategy for Streett objectives. We then show how to obtain an optimal strategy for Streett objectives by solving certain nonstochastic Streett games.

This research was supported in part by the NSF grants CCR-0225610 and CCR-0234690, and by the SNSF under the Indo-Swiss Joint Research Programme.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bjorklund, H., Sandberg, S., Vorobyov, S.: A discrete subexponential algorithms for parity games. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 663–674. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Chatterjee, K., de Alfaro, L., Henzinger, T.A.: Trading memory for randomness. In: QEST, pp. 206–217. IEEE Computer Society, Los Alamitos (2004)

    Google Scholar 

  3. Chatterjee, K., de Alfaro, L., Henzinger, T.A.: The Complexity of Stochastic Rabin and Streett Games. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 878–890. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Chatterjee, K., Henzinger, T.A.: Strategy Improvement and Randomized Subexponential Algorithms for Stochastic Parity Games. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 512–523. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Chatterjee, K., Jurdziński, M., Henzinger, T.A.: Simple Stochastic Parity Games. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 100–113. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Condon, A.: The complexity of stochastic games. Information and Computation 96, 203–224 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Condon, A.: On algorithms for simple stochastic games. In: Advances in Computational Complexity Theory. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 13, pp. 51–73. AMS (1993)

    Google Scholar 

  8. de Alfaro, L.: Formal Verification of Probabilistic Systems. PhD thesis, Stanford University (1997)

    Google Scholar 

  9. de Alfaro, L., Henzinger, T.A.: Concurrent ω-regular games. In: LICS, pp. 141–154. IEEE Computer Society, Los Alamitos (2000)

    Google Scholar 

  10. Emerson, E.A., Jutla, C.: The complexity of tree automata and logics of programs. In: FOCS, pp. 328–337. IEEE Computer Society, Los Alamitos (1988)

    Google Scholar 

  11. Hoffman, A., Karp, R.: On nonterminating stochastic games. Management Science 12, 359–370 (1966)

    Article  MathSciNet  Google Scholar 

  12. Kupferman, O., Vardi, M.Y.: Weak alternating automata and tree-automata emptiness. In: STOC, pp. 224–233. ACM Press, New York (1998)

    Google Scholar 

  13. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems: Specification. Springer, Heidelberg (1992)

    Google Scholar 

  14. Piterman, N., Pnueli, A.: Faster solutions of Rabin and Streett games. In: LICS, IEEE Computer Society, Los Alamitos (to appear, 2006)

    Google Scholar 

  15. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179–190. ACM, New York (1989)

    Google Scholar 

  16. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete-event processes. SIAM J. Control and Optimization 25, 206–230 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Thomas, W.: Languages, automata, and logic. In: Beyond Words. Handbook of Formal Languages, vol. 3, pp. 389–455. Springer, Heidelberg (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chatterjee, K., Henzinger, T.A. (2006). Strategy Improvement for Stochastic Rabin and Streett Games. In: Baier, C., Hermanns, H. (eds) CONCUR 2006 – Concurrency Theory. CONCUR 2006. Lecture Notes in Computer Science, vol 4137. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11817949_25

Download citation

  • DOI: https://doi.org/10.1007/11817949_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37376-6

  • Online ISBN: 978-3-540-37377-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics