Skip to main content

RNA Secondary Structure Prediction with Simple Pseudoknots Based on Dynamic Programming

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4115))

Abstract

RNA molecules are sequences of nucleotides that serve as more than mere intermediaries between DNA and proteins, e.g. as catalytic molecules. The sequence of nucleotides of an RNA molecule constitutes its primary structure, and the pattern of pairing between nucleotides determines the secondary structure of an RNA. Computational prediction of RNA secondary structure is among the few structure prediction problems that can be solved satisfactory in polynomial time. Most work has been done to predict structures that do not contain pseudoknots. Pseudoknots have generally been excluded from the prediction of RNA secondary structures due to its difficulty in modelling. In this paper, we present a computation the maximum number of base pairs of an RNA sequence with simple pseudoknots. Our approach is based on pseudoknot technique proposed by Akutsu. We show that a structure with the maximum possible number of base pairs could be deduced by a improved Nussinov’s trace-back procedure. In our approach we also considered wobble base pairings (G·U). We introduce an implementation of RNA secondary structure prediction with simple pseudoknots based on dynamic programming algorithm. To evaluate our method we use the 15 sequences with simple pseudoknots of variable size from 19 to 25 nucleotides. We get our experimental data set from PseudoBase. Our program predicts simple pseudoknots with correct or almost correct structure for 53% sequences.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eddy, S.R.: What is Dynamic Programming? Nature BioTechnology 22(7) (2004) Nature Publishing Group, November, July

    Google Scholar 

  2. Robin, D.D.: Prepared under the Direction of Sean R. Eddy.: RNA Structural Alignment Using Stochastic Context-free Grammars. Ph.D thesis presented to the Sever Institute of Washington University (December 2004)

    Google Scholar 

  3. Stephen McCauley advised by Ian Holmes.: An Analysis of the Relative Efficacy of the Nussinov-Felsenstein, and the Knudsen-Hein, RNA Secondary Structure Prediction, Ph.D thesis presented in October 6 (2003)

    Google Scholar 

  4. Eddy, S.R.: How do RNA Folding Algorithms Works? Nature BioTechnology, vol. 22. Nature Publishing Group (2004)

    Google Scholar 

  5. Pipas, J., McMahon, J.: A Method for Predicting RNA Secondary Structure. Proc Natl. Acad. Sci. 72, 2017–2021 (1975)

    Article  Google Scholar 

  6. Sankoff, D.: Simultaneous Solution of the RNA Folding, Alignment, and Protosequence Problems. SIAM J. Appl. Math. 45, 810–825 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  7. Nussinov, R.P., Eddy, S.R., Griggs, J.R., Kleitman, D.J.: Algorithms for Loop Matching. SIAM Journal of Applied Mathematics 35, 68–82 (1978)

    Article  MATH  Google Scholar 

  8. Nussinov, R., Jacobson, A.: Fast Algorithm for Predicting the Secondary Structure of Single-stranded RNA. Proc. Natl. Acad. Sci. 77, 6309–6313 (1980)

    Article  Google Scholar 

  9. Waterman, M.S., Smith, T.F.: RNA Secondary Structure: A Complete Mathematical Analysis. Mathematical Bioscience 42, 257–266 (1978)

    Article  MATH  Google Scholar 

  10. Zuker, M., Stiegler, P.: Optimal Computer Folding of Large RNA Sequences Using Thermodynamics and Auxiliary Information. Nucleic Acids Res. 9(133) (1981)

    Google Scholar 

  11. Zuker, M., Sankoff, D.: RNA Secondary Structures and Their Prediction. Mathematical Bioscience 46, 591–621 (1984)

    MATH  Google Scholar 

  12. Zuker, M.: On Finding All Suboptimal Foldings of an RNA Molecule. Science 244, 48–52 (1989)

    Article  MathSciNet  Google Scholar 

  13. Zuker, M., Mathews, D.H., Turner, D.H.: Algorithms and Thermodynamics for RNA Secondary Structure Prediction: A Practical Guide in RNA Biochemistry and Biotechnology. In: Barciszewski, J., Clark, B. (eds.) NATO ASI Series, Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

  14. Eddy, S.R., Durbin, R.: RNA Sequence Analysis Using Covariance Models. Nucl. Acids. Res. 22, 2079–2088 (1994)

    Article  Google Scholar 

  15. Gorodkin, J., Heyer, L.J., Stormo, G.D.: Finding the Most Significant Common Sequence and Structure Motifs in a set of RNA Sequences. Nucl. Acids. Res. 25, 3724–3732 (1997)

    Article  Google Scholar 

  16. Samuel, I., Ming-Yang, K.: Predicting RNA Secondary Structures with Arbitrary Pseudoknots by Maximizing the Number of Stacking Pairs. Journal of Computational biology 10(6), 981–995 (2003)

    Article  Google Scholar 

  17. Tabaska, J., Stormo, G.: Automated Alignment of RNA Sequences to Pseudoknotted Structures. In: Fifth International Conference on Intelligent Systems for Molecular Biology, pp. 311–318. The AAAI Press, Menlo Park (1997)

    Google Scholar 

  18. Tabaska, J.E., Cary, R.B., Gabow, H.N., Stormo, G.D.: An RNA Folding Method Capable of Identifying Pseudoknots and Base Triples. Bioinformatics 14, 691–699 (1998)

    Article  Google Scholar 

  19. Rivas, E., Eddy, S.: A Dynamic Programming Algorithm for RNA Structure Prediction Including Pseudoknots. Journal of Molecular Biology 285, 2053 (1999)

    Article  Google Scholar 

  20. Rivas, E., Eddy, S.R.: Noncoding RNA Gene Detection Using Comparative Sequence Analysis. BioMedCentral 2(8), Bioinformatics (2001)

    Google Scholar 

  21. Akutsu, T.: Dynamic Programming Algorithm for RNA Secondary Structure Prediction with Pseudoknots. Discrete Appl. Math. 104, 45–62 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Uemura, Y., Hasegawa, A., Kobayashi, S., Yokomori, T.: Tree Adjoining Grammars for RNA Structure Prediction. Theoretical Computer Science 210, 277–303 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Dirks, R.M., Pierce, N.A.: A Partition Function Algorithm for Nucleic Acid Secondary Structure Including Pseudoknots. J. Comput. Chem. 24, 1664–1677 (2003)

    Article  Google Scholar 

  24. Crick, F.H.: Codon–anticodon Pairing: The Wobble Hypothesis. J. Mol.Biol. 19, 548–555 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Namsrai, OE., Jung, K.S., Kim, S., Ryu, K.H. (2006). RNA Secondary Structure Prediction with Simple Pseudoknots Based on Dynamic Programming. In: Huang, DS., Li, K., Irwin, G.W. (eds) Computational Intelligence and Bioinformatics. ICIC 2006. Lecture Notes in Computer Science(), vol 4115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11816102_33

Download citation

  • DOI: https://doi.org/10.1007/11816102_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37277-6

  • Online ISBN: 978-3-540-37282-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics