Skip to main content

DNA Computing Processor: An Integrated Scheme Based on Biochip Technology for Performing DNA Computing

  • Conference paper
  • 1430 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4115))

Abstract

An integrated scheme based on biochip technology for performing DNA computing is proposed here. This work is motivated by the goal of integrating all the steps of DNA computing into one machine called DNA computing processor. The basic structure of processor consists of making DNA micro-arrays unit, encoding DNA sequences unit, micro-reaction unit, solution extraction unit and micro-control unit. The functions of each unit are discussed in detail, especially for the solution extraction unit, where the optimal solution spaces are extracted. Finally, conclusions are drawn and future studies are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman, L.M.: Molecular Computation of Solutions to Combinatorial Problems. Science 11, 1021–1023 (1994)

    Article  Google Scholar 

  2. Meng, D.Z., Cao, H.P.: DNA Computing and Biological Mathematics. Acta Biophysica Sinica (in Chinese) 2, 163–174 (2002)

    Google Scholar 

  3. Charlot, B., et al.: Research Activities, http://tima.imag.fr/research/files/gr-04/mns.pdf

  4. Gabig, M., Wegrzyn, G.: An Introduction to DNA Chips: Principles, Technology, Applications and Analysis. Acta Biochimica Polonica 3, 615–622 (2001)

    Google Scholar 

  5. Garzon, M.H., Deaton, R.J.: Codeword Design and Information Encoding in DNA Ensembles. Natural Computing 3, 253–292 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Tanaka, F., Nakatsugawa, M., Yamamoto, M., Shiba, T., Ohuchi, A.: Developing Support System for Sequence Design in DNA Computing. In: Proc. 7th Int. Workshop DNA Based Comput., pp. 340–349 (2001)

    Google Scholar 

  7. Frutos, A.G., et al.: Demonstration of a Word Design Strategy for DNA Computing on Surfaces. Nucleic Acids Res. 23, 4748–4757 (1997)

    Article  Google Scholar 

  8. Faulhammer, D., Cukras, A.R., Lipton, R.J., Landweber, L.F.: Molecular Computation: RNA Solutions to Chess Problems. Proc. Natl. Acad. Sci. U.S.A. 97, 1385–1389 (2000)

    Article  Google Scholar 

  9. Arita, M., Kobayashi, S.: DNA Sequence Design Using Templates. New Generation Comput. 20, 263–277 (2002)

    Article  MATH  Google Scholar 

  10. Arita, M., et al.: Improving Sequence Design for DNA Computing. In: Proc. Genetic Evol. Comput., pp. 875–882 (2000)

    Google Scholar 

  11. Tuplan, D.C., Hoose, H., Condon, A.: Stochastic Local Search Algorithms for DNA Word Design. In: Proc. 8th Int. Workshop DNA Based Comput., pp. 229–241 (2002)

    Google Scholar 

  12. Andronescu, M., et al.: Algorithms for Testing that DNA Word Designs Avoid Unwanted Secondary Structure. In: Proc. 8th Int. Workshop DNA Based Comput., pp. 182–195 (2002)

    Google Scholar 

  13. Zhang, B.T., Shin, S.Y.: Molecular Algorithms for Efficient and Reliable DNA Computing. In: Proc. Genetic Program (GP), pp. 735–742 (1998)

    Google Scholar 

  14. Feldkamp, U., Saghafi, S., Banzhaf, W., Rauhe, H.: DNA Sequence Generator–A Program for the Construction of DNA Sequences. In: Proc.7th Int. Workshop DNA Based Comput., pp. 179–188 (2001)

    Google Scholar 

  15. Hartemink, A.J., Gifford, D.K., Khodor, J.: Automated Constraint Based Nucleotide Sequence Selection for DNA Computation. In: Proc. 4th DIMACS Workshop DNA Based Comput., pp. 227–235 (1998)

    Google Scholar 

  16. Deaton, R., Chen, J., Bi, H., Rose, J.A.: A Software Tool for Generating Noncrosshybridization Libraries of DNA Oligonucleotides. In: Proc. 8th Int. Workshop DNA Based Comput., pp. 252–261 (2002)

    Google Scholar 

  17. Deaton, R., et al.: A PCR-Based Protocol for in Vitro Selection of Noncrosshybridizing Olgionucleotides. In: Proc. 8th Int. Workshop DNA Based Comput., pp. 196–204 (2002)

    Google Scholar 

  18. Tanaka, F., Kameda, A., Yamamoto, M., Ohuchi, A.: Design of Nucleic Acid Sequences for DNA Computing Based on a Thermodynamic Approach. Nucleic Acids Res. 3, 903–911 (2005)

    Article  Google Scholar 

  19. Shin, S.Y., Lee, I.H., Kim, D., Zhang, B.T.: Multi-Objective Evolutionary Optimization of DNA Sequences for Reliable DNA Computing. IEEE Trans. Evol. Comput. 2, 143–158 (2005)

    Article  Google Scholar 

  20. Taylor, T.B., Emily, S., et al.: Optimization of the Performance of the Polymerase Chain Reaction in Silicon-Based Microstructures. Nucleic Acids Res. 15, 3164–3168 (1997)

    Article  Google Scholar 

  21. Braich, R.S., Chelyapov, N., et al.: Solution of a 20-Variable 3-SAT Problem on a DNA Computer. Science 19, 499–502 (2002)

    Article  Google Scholar 

  22. Liu, Q.H., Wang, L., et al.: DNA Computing on Surfaces. Nature 13, 175–178 (2000)

    Google Scholar 

  23. Zhang, F.Y., Yin, Z.X., et al.: DNA Computation Model to Solve 0-1 Programming Problem. Biosystems 74, 9–14 (2004)

    Article  Google Scholar 

  24. Shi, X.L., Li, X., Zhang, Z., et al.: Improce Capability of DNA Automaton: DNA Automaton with three Internal States and Tape Head Move in Two Directions. In: Huang, D.-S., Zhang, X.-P., Huang, G.-B. (eds.) ICIC 2005. LNCS, vol. 3645, pp. 71–79. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  25. Wang, H., Lin, B.C.: Capillary Electrophoresis on Microchip and its Application in Life Science. Journal of Analytical Chemistry (in Chinese) 3, 359–364 (2002)

    Google Scholar 

  26. Thompson, S.: Chemiluminescent Detection of Nucleic Acids. International Biotechnology Laboratory 10, 14 (2000)

    Google Scholar 

  27. Momoko, K., Tamao, O., et al.: Laser-Induced Fluorescence Microscopic System Using an Optical Parametric Oscillator for Tunable Detection in Microchip Analysis. Analytical and Bioanalytical Chemistry 4, 992–995 (2005)

    Google Scholar 

  28. Scott, E., Van, B.: An Introduction to Mass Spectrometry, http://science.widener.edu/svb/massspec/massspec.pdf

  29. Walter, R., Vandaveer, S.A., et al.: Recent Developments in Electrochemical Detection for Microchip Capillary Electrophoresis. Electrophoresis 25, 3528–3549 (2004)

    Article  Google Scholar 

  30. Ennis, M.A., Gelfand, D.H., et al.: PCR Protocols: a Guide to Methods and Applications. Academic Press, Inc., London (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, YF., Cui, GZ., Huang, BY., Pan, LQ., Zhang, XC. (2006). DNA Computing Processor: An Integrated Scheme Based on Biochip Technology for Performing DNA Computing. In: Huang, DS., Li, K., Irwin, G.W. (eds) Computational Intelligence and Bioinformatics. ICIC 2006. Lecture Notes in Computer Science(), vol 4115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11816102_27

Download citation

  • DOI: https://doi.org/10.1007/11816102_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37277-6

  • Online ISBN: 978-3-540-37282-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics