Skip to main content

On SAT Modulo Theories and Optimization Problems

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4121))

Abstract

Solvers for SAT Modulo Theories (SMT) can nowadays handle large industrial (e.g., formal hardware and software verification) problems over theories such as the integers, arrays, or equality. Here we show that SMT approaches can also efficiently solve problems that, at first sight, do not have a typical SMT flavor. In particular, here we deal with SAT and SMT problems where models M are sought such that a given cost function f(M) is minimized.

For this purpose, we introduce a variant of SMT where the theory T becomes progressively stronger, and prove it correct using the Abstract DPLL Modulo Theories framework. We discuss two different examples of applications of this SMT variant: weighted Max-SAT and weighted Max-SMT. We show how, with relatively little effort, one can obtain a competitive system that, in the case of weighted Max-SMT in the theory of Difference Logic, can even handle well-known hard radio frequency assignment problems without any tailored heuristics. These results seem to indicate that Max-SAT/SMT techniques can already be used for realistic applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: PBS: A backtrack-search pseudo-boolean solver and optimizer. In: SAT 2002. LNCS, pp. 346–353. Springer, Heidelberg (2002)

    Google Scholar 

  2. Barrett, C., de Moura, L., Stump, A.: SMT-COMP: Satisfiability Modulo Theories Competition. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 20–23. Springer, Heidelberg (2005), http://www.csl.sri.com/users/demoura/smt-comp/

    Chapter  Google Scholar 

  3. Cabon, B., de Givry, S., Lobjois, L., Schiex, T., Warners, J.P.: Radio link frequency assignment. Constraints 4(1), 79–89 (1999)

    Article  MATH  Google Scholar 

  4. Colton, S., Meier, A., Sorge, V., McCasland, R.: Automatic generation of classification theorems for finite algebras. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 400–414. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. de Givry, S., Heras, F., Zytnicki, M., Larrosa, J.: Existential arc consistency: Getting closer to full arc consistency in weighted CSPs. In: IJCAI 2005, pp. 84–89 (2005)

    Google Scholar 

  6. de Givry, S., Larrosa, J., Meseguer, P., Schiex, T.: Solving max-sat as weighted csp. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 363–376. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Comm. of the ACM 5(7), 394–397 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  8. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM 7, 201–215 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  9. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. Journal on Satisfiability, Boolean Modeling and Computation 2, 1–26 (2006)

    MATH  Google Scholar 

  10. Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): Fast Decision Procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 175–188. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Larrosa, J., Heras, F.: Resolution in Max-SAT and its relation to local consistency in weighted CSPs. In: IJCAI 2005, pp. 193–198 (2005)

    Google Scholar 

  12. Li, C., Manyà, F., Planes, J.: Solving Over-Constrained Problems with SAT. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 403–414. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an Efficient SAT Solver. In: DAC 2001 (2001)

    Google Scholar 

  14. Nieuwenhuis, R., Oliveras, A.: DPLL(T) with Exhaustive Theory Propagation and its Application to Difference Logic. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 321–334. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Abstract DPLL and Abstract DPLL Modulo Theories. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 36–50. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Sheini, H., Peintner, B., Sakallah, K., Pollack, M.: On solving soft temporal constraints using SAT techniques. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 607–621. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Sheini, H.M., Sakallah, K.A.: Pueblo: A hybrid pseudo-boolean SAT solver. J. Satisfiability, Boolean Modeling and Comp. 2, 165–189 (2006)

    MATH  Google Scholar 

  18. Tinelli, C., Ranise, S.: SMT-LIB: The Satisfiability Modulo Theories Library (July 2005), http://goedel.cs.uiowa.edu/smtlib/

  19. Xing, Z., Zhang, W.: Maxsolver: an efficient exact algorithm for (weighted) maximum satisfiability. Artif. Intell. 164(1-2), 47–80 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nieuwenhuis, R., Oliveras, A. (2006). On SAT Modulo Theories and Optimization Problems. In: Biere, A., Gomes, C.P. (eds) Theory and Applications of Satisfiability Testing - SAT 2006. SAT 2006. Lecture Notes in Computer Science, vol 4121. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11814948_18

Download citation

  • DOI: https://doi.org/10.1007/11814948_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37206-6

  • Online ISBN: 978-3-540-37207-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics