Performance Modeling of a Bottleneck Node in an IEEE 802.11 Ad-Hoc Network

  • Hans van den Berg
  • Michel Mandjes
  • Frank Roijers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4104)


The ieee 802.11 mac-protocol, often used in ad-hoc networks, has the tendency to share the capacity equally amongst the active nodes, irrespective of their loads. An inherent drawback of this fair-sharing policy is that a node that serves as a relay-node for multiple flows is likely to become a bottleneck. This paper proposes a flow-level performance model of such a bottleneck node using fluid-flow analysis. Assuming Poisson initiations of new flow transfers at the bottleneck node, we obtain insightful, robust, and explicit expressions for characteristics related to the overall flow transfer time, the buffer occupancy, and the packet delay at the bottleneck node. The analysis is enabled by a translation of the behavior of the bottleneck node and the source nodes in terms of an m/g/1 queueing model. We conclude the paper by an assessment of the impact of alternative capacity sharing amongst source nodes and the bottleneck in order to improve the performance of the bottleneck.


Medium Access Control Source Node Relay Node Transfer Time Distribute Coordination Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asare, B.K., Foster, F.G.: Conditional response times in the m/g/1 Processor-sharing system. Journal of Applied Probability 20, 910–915 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bianchi, G.: Performance analysis of the IEEE 802.11 distributed coordination f unction. IEEE Journal on Selected Areas in Communications 18, 535–547 (2000)CrossRefGoogle Scholar
  3. 3.
    Carvalho, M.M., Garcia-Luna-Aceves, J.J.: Delay analysis of IEEE 802.11 single-hop networks. In: Proceedings of the 11th IEEE International Conference on Network Protocols, Atlanta, USA (2003)Google Scholar
  4. 4.
    Carvalho, M.M., Garcia-Luna-Aceves, J.J.: A scalable model for channel access protocols in multihop ad hoc networks. In: Proceedings of MobiCom 2004, Philadelphia, USA (2004)Google Scholar
  5. 5.
    Coffman Jr., E.G., Muntz, R.R., Trotter, H.: Waiting time distributions for Processor-sharing systems. Journal of the ACM 17, 123–130 (1970)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Cohen, J.W.: The multiple phase service network with generalized Processor sharing. Acta informatica 12, 245–284 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Engelstad, P.E., Østerbø, O.N.: Non-saturation and saturation analysis of IEEE 802.11e EDCA with starvation prediction. In: Proceedings of MSWiM 2005, Montreal, Canada (2005)Google Scholar
  8. 8.
    Foh, C.H., Zukerman, M.: Performance analysis of the IEEE 802.11 MAC protocol. In: Proceedings of European Wireless 2002, Florence, Italy (2002)Google Scholar
  9. 9.
    Fu, Z., Zerfos, P., Luo, H., Lu, S., Zhang, L., Gerla, M.: The impact of multihop wireless channel on TCP throughput and loss. In: Proceedings of INFOCOM 2003, San Francisco, USA (2003)Google Scholar
  10. 10.
    He, J., Pung, H.K.: Fairness of medium access control for multi-hop ad hoc networks. Computer Networks 48, 867–890 (2005)zbMATHCrossRefGoogle Scholar
  11. 11.
    He, J., Pung, H.K.: Performance modelling and evaluation of IEEE 802.11 distributed coordination function in multihop wireless networks. Computer Communications 29, 1300–1308 (2006)CrossRefGoogle Scholar
  12. 12.
    IEEE p802.11b/d7.0, Supplement: higher speed physical layer extension in the 2.4 GHZ band (1999)Google Scholar
  13. 13.
    IEEE p802.11e-2005, Amendment 8: Medium Access Control (MAC) Quality of Service Enhancements (November 2005)Google Scholar
  14. 14.
    Litjens, R., Roijers, F., van den Berg, J.L., Boucherie, R.J., Fleuren, M.J.: Analysis of flow transfer times in IEEE 802.11 wireless LANS. Annals of Telecommunications 59, 1407–1432 (2004)Google Scholar
  15. 15.
    Mandjes, M.R.H., Roijers, F.: A fluid system with coupled input and output and its application to bottlenecks in ad hoc networks. Available as cwi-report at
  16. 16.
    Roijers, F., van den Berg, J.L., Fan, X.: Analytical modelling of tcp file transfer times over IEEE 802.11 wireless LANS. In: Proceedings of ITC-19, Beijing, China (2005)Google Scholar
  17. 17.
    Sakurai, T., Hanly, S.: Modelling TCP flows over an 802.11 wireless LAN. In: Proceedings of European Wireless Conference, Nicosia, Cyprus (2005)Google Scholar
  18. 18.
    Tijms, H.C.: Stochastic models: an algorithmic approach. Wiley & Sons, Chichester (1994)zbMATHGoogle Scholar
  19. 19.
    Winands, E.M.M., Denteneer, T.J.J., Resing, J.A.C., Rietman, R.: A finite-source feedback queueing network as a model of the IEEE 802.11 distributed coordination function. In: Proc. of European Wireless 2004, Barcalona, Spain (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hans van den Berg
    • 1
    • 2
  • Michel Mandjes
    • 3
    • 4
  • Frank Roijers
    • 1
    • 3
  1. 1.TNO Information and Communication TechnologyThe Netherlands
  2. 2.Department of Design and Analysis of Communication SystemsUniversity of TwenteThe Netherlands
  3. 3.Centre for Mathematics and Computer ScienceThe Netherlands
  4. 4.Korteweg-de Vries InstituteUniversity of AmsterdamThe Netherlands

Personalised recommendations