Skip to main content

Finding Deformable Shapes by Point Set Matching Through Nonparametric Belief Propagation

  • Conference paper
Medical Imaging and Augmented Reality (MIAR 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4091))

Included in the following conference series:

  • 1248 Accesses

Abstract

This paper addresses the problem of finding a deformable shape by matching a point distribution model to the observation. A probabilistic graphical model is built for the point distribution model. The point correspondence and optimal model parameters are found by carrying out nonparametric belief propagation on the graphical model. Experiments on a point distribution model of the proximal model verified the idea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cootes, T.F., Taylor, C.J.: Statistical models of appearance for computer vision. Technical report, University of Manchester, UK (2004)

    Google Scholar 

  2. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analyis and Machine Intelligence 24(24), 509–522 (2002)

    Article  Google Scholar 

  3. Coughlan, J., Ferreira, S.: Finding Deformable Shapes Using Loopy Belief Propagation. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 453–468. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Rangarajan, A., Coughlan, J., Yuille, A.L.: A Bayesian network framework for relational shape matching. In: Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV) (2003)

    Google Scholar 

  5. Caetano, T.S., Caeli, T., Barone, D.A.C.: An optimal probabilistic graphical model for point set matching. Technical Report TR 04-03, University of Alberta, Edmonton, Alberta Canada (February 2004)

    Google Scholar 

  6. Hamze, F., de Freitas, N.: Hot coupling: a particle approach to inference and normalization on pairwise undirected graphs of arbitrary topology. Neural Information Processing Systems (NIPS) (2005)

    Google Scholar 

  7. Ma, B., Ellis, R.E.: Surface-based registration with a particle filter. In: Seventh International Conference on Medical Image Computing and Computer Assisted Intervention, France (2004)

    Google Scholar 

  8. Caelli, T., Kosinov, S.: An eigenspace projection clustering method for inexact graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(4), 515–519 (2004)

    Article  Google Scholar 

  9. Jain, V., Zhang, H.: Robust 3D shape correspondence in the spectral domain. In: International Conference on Shape Modeling and Applications (SMI) 2006, Matsushima, Japan (in press)

    Google Scholar 

  10. Zinber, T., Schmidt, J., Niemann, H.: A refined ICP algorithm for robust 3D correspondence estimation. In: Proceedings of International Conference on Image Processing (2003)

    Google Scholar 

  11. Chui, H., Rangarajan, A.: A new algorithm for non-rigid point matching. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 44–51 (2000)

    Google Scholar 

  12. Chui, H., Rangarajan, A.: A feature registration framework using mixture models. In: IEEE Workshop on Mathematical Methods in Biomecical Image Analysis (MMBIA), pp. 190–197 (2000)

    Google Scholar 

  13. Sudderth, E.B., Ihler, A.T., Freeman, W.T., Willsky, A.S.: Nonparametric belief propagation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, p. 605 (2003)

    Google Scholar 

  14. Williams, J.L., Maybeck, P.S.: Cost-function-based Gaussian mixture reduction for target tracking. In: Sixth International Conference on Information Fusion, Cairns, Australia, pp. 1047–1054 (2003)

    Google Scholar 

  15. Ihler, A., Sudderth, E., Freeman, W., Willsky, A.: Efficient multiscale sampling from products of Gaussian mixtures. Neural Information Processing Systems 17 (2003)

    Google Scholar 

  16. Jian, B., Vemuri, B.C.: A robust algorithm for point set registration using mixture of Gaussians. In: Tenth IEEE International Conference on Computer Vision (ICCV 2005), vol. 2 (2005)

    Google Scholar 

  17. Caetano, T.S., Caeli, T., Barone, D.A.C.: A comparison of junction tree and relaxation algorithm for point matching using different distance metrics. Technical Report TR 04-03, University of Alberta, Edmonton, Alberta Canada (February 2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dong, X., Zheng, G. (2006). Finding Deformable Shapes by Point Set Matching Through Nonparametric Belief Propagation. In: Yang, GZ., Jiang, T., Shen, D., Gu, L., Yang, J. (eds) Medical Imaging and Augmented Reality. MIAR 2006. Lecture Notes in Computer Science, vol 4091. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11812715_8

Download citation

  • DOI: https://doi.org/10.1007/11812715_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37220-2

  • Online ISBN: 978-3-540-37221-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics