Quota-Based Merging Operators for Stratified Knowledge Bases

  • Guilin Qi
  • Weiru Liu
  • David A. Bell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4092)


Current merging methods for stratified knowledge bases are often based on the commensurability assumption, i.e. all knowledge bases share a common scale. However, this assumption is too strong in practice. In this paper, we propose a family of operators to merge stratified knowledge bases without commensurability assumption. Our merging operators generalize the quota operators, a family of important merging operators in classical logic. Both logical properties and computational complexity issues of the proposed operators are studied.


Knowledge Base Classical Logic Vote Rule Integrity Constraint Possibilistic Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baral, C., Kraus, S., Minker, J.: Combining multiple knowledge bases. IEEE Transactions on Knowledge and Data Engineering 3(2), 208–220 (1991)CrossRefGoogle Scholar
  2. 2.
    Barberà, S., Sonnenschein, H., Zhou, L.: Voting by committees. Econometrica 59(3), 595–609 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Benferhat, S., Cayrol, C., Dubois, D., Lang, L., Prade, H.: Inconsistency management and prioritized syntax-based entailment. In: Proc. of IJCAI 1993, pp. 640–645 (1993a)Google Scholar
  4. 4.
    Benferhat, S., Dubois, D., Prade, H., Williams, M.-A.: A Practical Approach to Fusing Prioritized Knowledge Bases. In: Barahona, P., Alferes, J.J. (eds.) EPIA 1999. LNCS, vol. 1695, pp. 222–236. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Benferhat, S., Dubois, D., Kaci, S., Prade, H.: Possibilistic merging and distance-based fusion of propositional information. Annals of Mathematics and Artificial Intelligence 34, 217–252 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Brewka, G.: A rank-based description language for qualitative preferences. In: Proc. of ECAI 2004, pp. 303–307 (2004)Google Scholar
  7. 7.
    Chopra, S., Ghose, S., Meyer, T.: Social choice theory, belief merging, and strategy-proofness. Journal of Information Fusion 7, 61–79 (2005)Google Scholar
  8. 8.
    Dubois, D., Lang, J., Prade, H.: Possibilistic logic. In: Handbook of logic in Aritificial Intelligence and Logic Programming, vol. 3, pp. 439–513. Oxford University Press, Oxford (1994)Google Scholar
  9. 9.
    Everaere, P., Konieczny, S., Marquis, P.: Quota and Gmin merging operators. In: Proc. of IJCAI 2005, pp. 424–429 (2005)Google Scholar
  10. 10.
    Gärdenfors, P.: Knowledge in Flux-Modeling the Dynamic of Epistemic States. MIT Press, Mass. (1988)Google Scholar
  11. 11.
    Konieczny, S., Pino Pérez, R.: Merging information under constraints: a qualitative framework. Journal of Logic and Computation 12(5), 773–808 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Konieczny, S., Lang, J., Pino Pérez, R.: DA2 operators. Artificial Intelligence 157(1-2), 49–79 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Konieczny, S., Pérez, R.P.: Propositional belief base merging or how to merge beliefs/goals coming from several sources and some links with social choice theory. European Journal of Operational Research 160(3), 785–802 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Liberatore, P., Schaerf, M.: Arbitration (or How to Merge Knowledge Bases). IEEE Transaction on Knowledge and Data Engineering 10(1), 76–90 (1998)CrossRefGoogle Scholar
  15. 15.
    Lang, J.: Logical preference representation and combinatorial vote. Annals of Mathematics and Artificial Intelligence 4(1-3), 37–71 (2004)CrossRefGoogle Scholar
  16. 16.
    Moulin, H.: Axioms of Cooperative Decision Making. Cambridge University Press, Cambridge (1988)zbMATHGoogle Scholar
  17. 17.
    Qi, G., Liu, W., Bell, D.A.: A revision-based approach to resolving conflicting information. In: Proc. of UAI 2005, pp. 477–484 (2005)Google Scholar
  18. 18.
    Qi, G., Liu, W., Bell, D.A.: Merging stratified knowledge bases under constraints. In: Proc. of AAAI (2006)Google Scholar
  19. 19.
    Revesz, P.Z.: On the semantics of arbitration. International Journal of Algebra and Computation 7(2), 133–160 (1997)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Spohn, W.: Ordinal conditional functions. In: Harper, W.L., Skyrms, B. (eds.) Causation in Decision, Belief Change, and Statistics, vol. 11, pp. 105–134. Kluwer Academic Publishers, Dordrecht (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Guilin Qi
    • 1
  • Weiru Liu
    • 1
  • David A. Bell
    • 1
  1. 1.School of Electronics, Electrical Engineering and Computer ScienceQueen’s University BelfastBelfastUK

Personalised recommendations