Description and Generation of Computational Agents

  • Roman Neruda
  • Gerd Beuster
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4092)


A formalism for the logical description of computational agents and multi-agent systems is given. It is explained how it such a formal description can be used to configure and reason about multi-agent systems realizing computational intelligence models. A usage within a real software system Bang 3 is demonstrated. The logical description of multi-agent systems opens Bang 3 for interaction with ontology based distributed knowledge systems like the Semantic Web.


Description Logic Message Type Agent Class Computational Agent First Order Predicate Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nwana, H.S.: Software agents: An overview. Knowledge Engineering Review 11(2), 205–244 (1995)Google Scholar
  2. 2.
    Doran, J.E., Franklin, S., Jennings, N.R., Norman, T.J.: On cooperation in multi-agent systems. The Knowledge Engineering Review 12(3), 309–314 (1997)CrossRefGoogle Scholar
  3. 3.
    Krušina, P., Neruda, R., Petrova, Z.: More autonomous hybrid models in bang. In: Alexandrov, V.N., Dongarra, J., Juliano, B.A., Renner, R.S., Tan, C.J.K. (eds.) ICCS-ComputSci 2001. LNCS, vol. 2074, pp. 935–942. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Neruda, R., Krušina, P., Kudova, P., Beuster, G.: Bang 3: A computational multi-agent system. In: Proceedings of the 2004 WI-IAT 2004 Conference. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  5. 5.
    Bonissone, P.: Soft computing: the convergence of emerging reasoning technologies. Soft computing 1, 6–18 (1997)Google Scholar
  6. 6.
    Hendler, J.: Agents and the semantic web. IEEE Intelligent Systems 16(2), 30–37 (2001)CrossRefGoogle Scholar
  7. 7.
    Meolic, R., Kapus, T., Brezocnik, Z.: Model checking: A formal method for safety assurance of logistic systems. In: 2nd Congress Transport – Traffic – Logistics, Portoroz, Slovenia, pp. 355–358 (2000)Google Scholar
  8. 8.
    Beuster, G., Krušina, P., Neruda, R., Rydvan, P.: Towards building computational agent schemes. In: Artificial neural Nets and Genetic Algorithms — Proceedings of the ICANNGA 2003. Springer, Wien (2003)Google Scholar
  9. 9.
    Farquhar, A., Fikes, R., Rice, J.: Tools for assembling modular ontologies in ontolingua. Technical report, Stanford Knowledge Systems Laboratory (1997)Google Scholar
  10. 10.
    Genesreth, M.R., Fikes, R.E.: Knowledge interchange format, version 2.2. Technical report, Computer Science Department, Stanford University (1992)Google Scholar
  11. 11.
    Davis, M., (ed.): The Undecidable—Basic Papers on Undecidable Propositions, Unsolvable Problems and Computable Functions. Raven Press (1965)Google Scholar
  12. 12.
    Borgida, A.: On the relative expressiveness of description logics and predicate logics. Artificial Intelligence 82(1-2), 353–367 (1996)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Baader, F.: Logic-based knowledge representation. In: Wooldrige, M.J., Veloso, M. (eds.) Artificial Intelligence Today, Recent Trends and Developments, pp. 13–41. Springer, Heidelberg (1999)Google Scholar
  14. 14.
    Hustadt, U., Schmidt, R.A.: On the relation of resolution and tableaux proof system for description logics. In: Thomas, D. (ed.) Proceedings of the 16th Internatoinal joint Conference on Artificial Intelligence IJCAI 1999, Stockholm, Sweden, vol. 1, pp. 110–115. Morgan Kaufmann, San Francisco (1999)Google Scholar
  15. 15.
    Baumgartner, P., Furbach, U., Thomas, B.: Model-based deduction for knowledge representation. In: Proceedings of the International Workshop on the Semantic Web, Hawaii, USA (2002)Google Scholar
  16. 16.
    Vellino, A.: The relative complexity of sl-resolution and analytical tableau. Studia Logica 52(2), 323–337 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Levy, A.Y., Rousset, M.C.: The limits of combining recursive horn rules with description logics. In: Proceedings of the Thirteenth National Conference on Artificial Intelligence, Portland, OR (1996)Google Scholar
  18. 18.
    Borgida, A.: On the relationship between description logic and predicate logic. In: CIKM, pp. 219–225 (1994)Google Scholar
  19. 19.
    Ferber, J.: Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence. Addison Wesley Longman, Harlow (1999)Google Scholar
  20. 20.
    Neruda, R., et al.: Bang web documentation (2006),

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Roman Neruda
    • 1
  • Gerd Beuster
    • 2
  1. 1.Institute of Computer ScienceAcademy of Sciences of the Czech RepublicPrague 8Czech Republic
  2. 2.Institute of InformaticsUniversity Koblenz-LandauKoblenzGermany

Personalised recommendations