Hyper Tableaux — The Third Version

  • Shasha Feng
  • Jigui Sun
  • Xia Wu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4092)


The first hyper tableau suffers from blind guessing in instancing the clauses, and evolves into the unification-driven style, the second version. However, we found a counterexample of it. We modify the calculus and a new hyper tableau is represented.


Inference Rule Open Branch Negative Literal Program Clause Ground Substitution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baumgartner, P., Furbach, U., Niemelä, I.: Hyper Tableaux (long version) (December 1996), from:
  2. 2.
    Baumgartner, P., Furbach, U., Niemelä, I.: Hyper Tableaux. In: Orłowska, E., Alferes, J.J., Moniz Pereira, L. (eds.) JELIA 1996. LNCS, vol. 1126, pp. 1–17. Springer, Heidelberg (1996)Google Scholar
  3. 3.
    Baumgartner, P.: Hyper Tableaux—The Next Generation. In: de Swart, H. (ed.) TABLEAUX 1998. LNCS, vol. 1397, pp. 60–76. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Chang, C., Lee, R.: Symbolic Logic and Mechanical Theorem Proving. Academic Press, London (1973)zbMATHGoogle Scholar
  5. 5.
    Fitting, M.: First Order Logic and Automated Theorem Proving. Texts and monographs in Computer Science. Springer, Heidelberg (1990)zbMATHGoogle Scholar
  6. 6.
    Letz, R., Mayr, K., Goller, C.: Controlled integrations of the Cut Rule into Connection Tableau Calculi. Journal of Automated Reasoning 13 (1994)Google Scholar
  7. 7.
    Baumgartner, P.: FDPLL—A First-Order Davis-Putnam-Logeman-Loveland Procedure. In: McAllester, D. (ed.) CADE 2000. LNCS (LNAI), vol. 1831. Springer, Heidelberg (2000)Google Scholar
  8. 8.
    Baumgartner, P., Tinelli, C.: The Model Evolution Calculus. In: Baader, F. (ed.) CADE 2003. LNCS, vol. 2741, pp. 350–364. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Letz, R., Stenz, G.: Proof and Model Generation with Disconnection Tableaux. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 142–156. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Letz, R.: First-Order Calculi and Proof Procedures for Automated Deduction. Darmstadt: Technische Hochschule Darmstadt (1993)Google Scholar
  11. 11.
    Kuhn, M.: Rigid Hypertableaux. In: Brewka, G., Habel, C., Nebel, B. (eds.) KI 1997. LNCS (LNAI), vol. 1303. Springer, Heidelberg (1997)Google Scholar
  12. 12.
    Robinson, J.A.: Automated deduction with hyper-resolution. I. J. Comput. Math. 1, 227–234 (1965)zbMATHGoogle Scholar
  13. 13.
    Brand, D.: Analytic Resolution in Theorem Proving. Artificial Intelligence 7, 285–318 (1976)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Shasha Feng
    • 1
  • Jigui Sun
    • 1
    • 2
  • Xia Wu
    • 1
  1. 1.College of Computer Science and TechnologyJilin UniversityChangchunChina
  2. 2.Key Lab of Symbolic Computation and Knowledge Engineer of Ministry of EducationChangchunChina

Personalised recommendations