On Representational Issues About Combinations of Classical Theories with Nonmonotonic Rules

  • Jos de Bruijn
  • Thomas Eiter
  • Axel Polleres
  • Hans Tompits
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4092)


In the context of current efforts around Semantic-Web languages, the combination of classical theories in classical first-order logic (and in particular of ontologies in various description logics) with rule languages rooted in logic programming is receiving considerable attention. Existing approaches such as SWRL, dl-programs, and DL + log, differ significantly in the way ontologies interact with (nonmonotonic) rules bases. In this paper, we identify fundamental representational issues which need to be addressed by such combinations and formulate a number of formal principles which help to characterize and classify existing and possible future approaches to the combination of rules and classical theories. We use the formal principles to explicate the underlying assumptions of current approaches. Finally, we propose a number of settings, based on our analysis of the representational issues and the fundamental principles underlying current approaches.


Logic Program Description Logic Conjunctive Query Nonmonotonic Logic Classical Predicate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dean, M., Schreiber, G. (eds.): OWL Web Ontology Language Reference (2004) W3C Recommendation (February 10, 2004)Google Scholar
  2. 2.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  3. 3.
    Horrocks, I., Patel-Schneider, P.F.: Reducing OWL entailment to description logic satisfiability. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 17–29. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Genesereth, M.R., Fikes, R.E.: Knowledge interchange format, version 3.0 reference manual. Technical Report Logic-92-1, Computer Science Department, Stanford University (1992)Google Scholar
  5. 5.
    Delugach, H. (ed.): ISO Common Logic (2006), Available at:
  6. 6.
    Gelder, A.V., Ross, K., Schlipf, J.S.: The well-founded semantics for general logic programs. Journal of the ACM 38(3), 620–650 (1991)zbMATHGoogle Scholar
  7. 7.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R.A., Bowen, K. (eds.) Proceedings of the Fifth International Conference on Logic Programming, pp. 1070–1080. The MIT Press, Cambridge (1988)Google Scholar
  8. 8.
    Rosati, R.: On the decidability and complexity of integrating ontologies and rules. Journal of Web Semantics 3(1), 61–73 (2005)Google Scholar
  9. 9.
    Rosati, R.: \(\mathcal{DL}\text{+}log\): Tight integration of description logics and disjunctive datalog. In: KR 2006 (2006)Google Scholar
  10. 10.
    Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming with description logics for the semantic web. In: Proc. of the International Conference of Knowledge Representation and Reasoning (KR 2004) (2004)Google Scholar
  11. 11.
    Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A semantic web rule language combining OWL and RuleML. Member submission May 21, 2004 W3C (2004)Google Scholar
  12. 12.
    Motik, B., Sattler, U., Studer, R.: Query answering for OWL-DL with rules. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 549–563. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Computing 9(3/4), 365–386 (1991)CrossRefGoogle Scholar
  14. 14.
    Reiter, R.: A logic for default reasoning. In: Ginsberg, M.L. (ed.) Readings in nonmonotonic reasoning, pp. 68–93. Morgan Kaufmann Publishers Inc., San Francisco (1987)Google Scholar
  15. 15.
    Moore, R.C.: Semantical considerations on nonmonotonic logic. Artificial Intelligence 25(1), 75–94 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    McCarthy, J.: Applications of circumscription to formalizing common sense knowledge. Artificial Intelligence 28, 89–116 (1986)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Lifschitz, V.: Circumscription. In: Handbook of Logic in AI and Logic Programming, vol. 3, pp. 298–352. Oxford University Press, Oxford (1994)Google Scholar
  18. 18.
    Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg (1987)zbMATHGoogle Scholar
  19. 19.
    Przymusinski, T.C.: On the declarative and procedural semantics of logic programs. Journal of Automated Reasoning 5(2), 167–205 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Horrocks, I., Patel-Schneider, P.F.: A proposal for an OWL rules language. In: Proc. of the Thirteenth International World Wide Web Conference (WWW 2004), pp. 723–731. ACM Press, New York (2004)Google Scholar
  21. 21.
    Levy, A.Y., Rousset, M.C.: Combining Horn rules and description logics in CARIN. Artificial Intelligence 104, 165–209 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Franconi, E., Tessaris, S.: Rules and queries with ontologies: A unified logical framework. In: Ohlbach, H.J., Schaffert, S. (eds.) PPSWR 2004. LNCS, vol. 3208, pp. 50–60. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  23. 23.
    Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: Combining logic programs with description logic. In: Proc. Intl. Conf. on the World Wide Web (WWW 2003), Budapest, Hungary (2003)Google Scholar
  24. 24.
    Heymans, S., Nieuwenborgh, D.V., Vermeir, D.: Nonmonotonic ontological and rule-based reasoning with extended conceptual logic programs. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 392–407. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  25. 25.
    Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: AL-log: integrating datalog and description logics. Journal of Intelligent Information Systems 10, 227–252 (1998)CrossRefGoogle Scholar
  26. 26.
    Rosati, R.: Towards expressive KR systems integrating datalog and description logics: A preliminary report. In: Proc. of the 1999 International Description Logics workshop (DL 1999), pp. 160–164 (1999)Google Scholar
  27. 27.
    Reiter, R.: Equality and domain closure in first-order databases. Journal of the ACM 27(2), 235–249 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Rosati, R.: Semantic and computational advantages of the safe integration of ontologies and rules. In: Fages, F., Soliman, S. (eds.) PPSWR 2005. LNCS, vol. 3703, pp. 50–64. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  29. 29.
    Lifschitz, V.: On open defaults. In: Lloyd, J. (ed.) Proceedings of the symposium on computational logic, pp. 80–95. Springer, Berlin (1990)Google Scholar
  30. 30.
    Konolige, K.: Quantification in autoepistemic logic. Fundamenta Informaticae 15(3-4), 275–300 (1991)zbMATHMathSciNetGoogle Scholar
  31. 31.
    Donini, F.M., Lenzerini, M., Nardi, D., Nutt, W., Schaerf, A.: An epistemic operator for description logics. Artificial Intelligence 100(1-2), 225–274 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Gelfond, M., Przymusinska, H.: Reasoning on open domains. In: LPNMR 1993, pp. 397–413 (1993)Google Scholar
  33. 33.
    Van Belleghem, K., Denecker, M., De Schreye, D.: A strong correspondence between description logics and open logic programming. In: Logic Programming, Proceedings of the Fourteenth International Conference on Logic Programming, pp. 346–360. MIT Press, Cambridge (1997)Google Scholar
  34. 34.
    Clark, K.L.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, pp. 293–322. Plenum Press, New York (1978)Google Scholar
  35. 35.
    Heymans, S., Van Nieuwenborgh, D., Vermeir, D.: Guarded open answer set programming. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 92–104. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  36. 36.
    Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)zbMATHCrossRefGoogle Scholar
  37. 37.
    Swift, T.: Deduction in ontologies via ASP. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS, vol. 2923, pp. 275–288. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  38. 38.
    Bonatti, P., Lutz, C., Wolter, F.: Expressive non-monotonic description logics based on circumscription. In: KR 2006 (2006)Google Scholar
  39. 39.
    Donini, F.M., Nardi, D., Rosati, R.: Description logics of minimal knowledge and negation as failure. ACM Transactions on Computational Logic 3(2), 177–225 (2002)CrossRefMathSciNetGoogle Scholar
  40. 40.
    Baader, F., Hollunder, B.: Embedding defaults into terminological knowledge representation formalisms. Journal of Automated Reasoning 14, 149–180 (1995)CrossRefMathSciNetGoogle Scholar
  41. 41.
    Calvanese, D., Giancomo, G.D., Lenzerini, M.: On the decidability of query containment under constraints. In: Proc. of the 17th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS 1998), pp. 149–158 (1998)Google Scholar
  42. 42.
    Motik, B., Rosati, R.: Closing semantic web ontologies. Technical report, University of Manchester (2006), Available at:
  43. 43.
    Lifschitz, V.: Minimal belief and negation as failure. Artificial Intelligence 70(1-2), 53–72 (1994)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jos de Bruijn
    • 1
  • Thomas Eiter
    • 2
  • Axel Polleres
    • 1
    • 3
  • Hans Tompits
    • 2
  1. 1.Digital Enterprise Research Institute (DERI)Leopold-Franzens Universität InnsbruckInnsbruckAustria
  2. 2.Institut für Informationssysteme 184/3Technische Universität WienViennaAustria
  3. 3.Universidad Rey Juan CarlosMadridSpain

Personalised recommendations