Discovering Knowledge About Key Sequences for Indexing Time Series Cases in Medical Applications

  • Peter Funk
  • Ning Xiong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4106)


Coping with time series cases is becoming an important issue in case based reasoning. This paper develops a knowledge discovery approach to discovering significant sequences for depicting symbolic time series cases. The input is a case library containing time series cases consisting of consecutive discrete patterns. The proposed approach is able to find from the given case library all qualified sequences that are non-redundant and indicative. A sequence as such is termed as a key sequence. It is shown that the key sequences discovered are highly usable in case characterization to capture important properties while ignoring random trivialities. The main idea is to transform an original (lengthy) time series into a more concise representation in terms of the detected occurrences of key sequences. Three alternate ways to develop case indexes based on key sequences are suggested. These indexes are simply vectors of numbers that are easily usable when matching two time series cases for case retrieval.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological variations and systems approaches. AI Communications 7, 39–59 (1994)Google Scholar
  2. 2.
    Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of the 11th International Conference on Data Engineering, pp. 3–14 (1995)Google Scholar
  3. 3.
    Bellazzi, R., Larizza, C., Riva, A.: Temporal abstractions for interpreting diabetic patients monitoring data. Intelligent Data Analysis 2, 97–122 (1998)CrossRefGoogle Scholar
  4. 4.
    Bichindaritz, I., Conlon, E.: Temporal knowledge representation and organization for case-based reasoning. In: Proc. TIME 1996, pp. 152–159. IEEE Computer Society Press, Washington (1996)Google Scholar
  5. 5.
    Chan, K.P., Fu, A.W.: Efficient time series matching by wavelets. In: Proceedings of the International Conference on Data Engineering, pp. 126–133 (1999)Google Scholar
  6. 6.
    Garofalakis, M.N., Rajeev, R., Shim, K.: SPIRIT: Sequential pattern mining with regular expressing constraints. In: Proceedings of the 25th International Conference on Very Large Data bases, pp. 223–234 (1999)Google Scholar
  7. 7.
    Jaere, M.D., Aamodt, A., Skalle, P.: Representing temporal knowledge for case-based prediction. In: Craw, S., Preece, A.D. (eds.) ECCBR 2002. LNCS, vol. 2416, pp. 174–188. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Jarmulak, J., Craw, S., Rowe, R.: Genetic algorithms to optimise CBR retrieval. In: Blanzieri, E., Portinale, L. (eds.) EWCBR 2000. LNCS, vol. 1898, pp. 136–147. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    McSherry, D.: Explaining the Pros and Cons of conclusions in CBR. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS, vol. 3155, pp. 317–330. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Montani, S., et al.: Case-based retrieval to support the treatment of end stage renal failure patients. Artificial Intelligence in Medicine (in press)Google Scholar
  11. 11.
    Montani, S., Portinale, L.: Case based representation and retrieval with time dependent features. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS, vol. 3620, pp. 353–367. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Nilsson, M., Funk, P.: A Case-based classification of respiratory sinus arrhythmia. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS, vol. 3155, pp. 673–685. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Olsson, E., Funk, P., Xiong, N.: Fault diagnosis in industry using sensor readings and case-based reasoning. Journal of Intelligent & Fuzzy Systems 15, 41–46 (2004)Google Scholar
  14. 14.
    Perner, P.: Incremental learning of retrieval knowledge in a case-based reasoning system. In: Ashley, K.D., Bridge, D.G. (eds.) Proceedings of the International Conference on Case-Based Reasoning, pp. 422–436. Springer, Heidelberg (2003)Google Scholar
  15. 15.
    Salton, G.: Automatic information organization and retrieval. McGraw-Hill, New York (1968)Google Scholar
  16. 16.
    Schmidt, R., Heindl, B., Pollwein, B., Gierl, L.: Abstraction of data and time for multiparametric time course prognoses. In: Smith, I., Faltings, B.V. (eds.) EWCBR 1996. LNCS (LNAI), vol. 1168, pp. 377–391. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  17. 17.
    von Schéele, B.: Classification Systems for RSA, ETCO2 and other physiological parameters. PBM Stressmedicine, Technical Report, Heden 110, 82131 Bollnäs, Sweden (1999)Google Scholar
  18. 18.
    Shahar, Y.: A framework for knowledge-based temporal abstractions. Artificial Intelligence 90, 79–133 (1997)zbMATHCrossRefGoogle Scholar
  19. 19.
    Srikant, R., Agrawal, R.: Mining sequential patterns: Generalizations and performance improvements. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS, vol. 1057, pp. 3–17. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  20. 20.
    Wu, Y., Agrawal, D., Abbadi, A.E.: A comparison of DFT and DWT based similarity search in time series databases. In: Proceedings of the 9th ACM CIKM Conference on Information and Knowledge Management, McLean, VA, pp. 488–495 (2000)Google Scholar
  21. 21.
    Zelikovitz, S., Hirsh, H.: Integrating background knowledge into nearest-neighbour text classification. In: Craw, S., Preece, A.D. (eds.) ECCBR 2002. LNCS, vol. 2416, pp. 1–5. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Peter Funk
    • 1
  • Ning Xiong
    • 1
  1. 1.Department of Computer Science and ElectronicsVästeråsSweden

Personalised recommendations