Skip to main content

Unsupervised Case Memory Organization: Analysing Computational Time and Soft Computing Capabilities

  • Conference paper
Advances in Case-Based Reasoning (ECCBR 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4106))

Included in the following conference series:

Abstract

There are problems that present a huge volume of information or/and complex data as imprecision and approximated knowledge. Consequently, a Case-Based Reasoning system requires two main characteristics. The first one consists of offering a good computational time without reducing the accuracy rate of the system, specially when the response time is critical. On the other hand, the system needs soft computing capabilities in order to construct CBR systems more tractable, robust and tolerant to noise. The goal of this paper is centred on achieving a compromise between computational time and complex data management by focusing on the case memory organization (or clustering) through unsupervised techniques. In this sense, we have adapted two approaches: 1) neural networks (Kohonen Maps); and 2) inductive learning (X-means). The results presented in this work are based on datasets acquired from medical and telematics domains, and also from UCI repository.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aamodt, A., Plaza, E.: Case-based reasoning: Foundations issues, methodological variations, and system approaches. IA Communications 7, 39–59 (1994)

    Google Scholar 

  2. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data for data mining applications. In: Proceedings of ACM SIGMOD International Conference on Management of Data, pp. 94–105 (1998)

    Google Scholar 

  3. Ankerst, M., Breunig, M.M., Kriegel, H., Sander, J.: OPTICS: ordering points to identify the clustering structure. In: Proceedings ACM SIGMOD International Conference on Management of Data, pp. 49–60. ACM Press, New York (1999)

    Google Scholar 

  4. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)

    Google Scholar 

  5. Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998)

    Google Scholar 

  6. Cheeseman, P., Stutz, J.: Bayesian classification (autoclass): Theory and results. In: Advances in Knowledge Discovery and Data Mining, pp. 153–180 (1996)

    Google Scholar 

  7. Cheetham, W., Shiu, S., Weber, R.: Soft case-based reasoning. The Knowledge Engineering, 1–4 (2005)

    Google Scholar 

  8. Corral, G., Golobardes, E., Andreu, O., Serra, I., Maluquer, E., Martínez, A.: Application of clustering techniques in a network security testing system. Artificial Intelligence Research and Devolopment 131, 157–164 (2005)

    Google Scholar 

  9. Corral, G., Zaballos, A., Cadenas, X., Grane, A.: A distributed vulnerability detection system for an intranet. In: Proceedings of the 39th IEEE International Carnahan Conference on Security Technology, pp. 291–295 (2005)

    Google Scholar 

  10. Dawkins, J., Hale, J.: A systematic approach to multi-stage network attack analysis. In: Second IEEE Int. Inf. Assurance Workshop (2004)

    Google Scholar 

  11. Deboeck, G., Kohonen, T.: Visual Explorations in Finance using self-organizing maps. Springer, Heidelberg (1998)

    Google Scholar 

  12. Domingo, A., Garcia, M.A.: Hierachical clustering of 3d objects and its application to minimum distance computation. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 5287–5292 (2004)

    Google Scholar 

  13. Domingos, F.: Control-sensitive feature selection for lazy learners. Artificial Intelligence Review 11(1-5), 227–253 (1997)

    Article  Google Scholar 

  14. Ester, M., Kriegel, H.P., Xu, X.: A database interface for clustering in large spatial databases. In: Knowledge Discovery and Data Mining, pp. 94–99 (1995)

    Google Scholar 

  15. Fisher, D.H.: Knowledge acquisition via incremental conceptual clustering. In: Machine Learning, pp. 139–172 (1987)

    Google Scholar 

  16. Garrell, J.M., Golobardes, E., Bernadó, E., Llorà, X.: Automatic diagnosis with genetic algorithms and case-based reasoning. AI in Engineering 13(4), 362–367 (1999)

    Google Scholar 

  17. Golobardes, E., Llorà, X., Salamó, M., Martí, J.: Computer aided diagnosis with case-based reasoning and genetic algorithms. Journal of Knowledge Based Systems 15, 45–52 (2002)

    Article  Google Scholar 

  18. Hamerly, G., Perelman, E., Calder, B.: Comparing multinomial and k-means clustering for simpoint. In: Proceedings of the International Symposium on Performance Analysis of Systems and Software (2006)

    Google Scholar 

  19. Han, J., Kamber, M.: Data mining: Concepts and techniques (2000)

    Google Scholar 

  20. Hanson, S.J.: Conceptual Clustering and Categorization: Bridging the Gap Between Induction and Causal Models, vol. 3, pp. 235–268. Kaufmann, San Francisco (1990)

    Google Scholar 

  21. Hartigan, J., Wong, M.: A k-means clustering algorithm. In: Applied Statistics, vol. 28, pp. 100–108 (1979)

    Google Scholar 

  22. Hartigan, J.A.: Clustering Algorithms. John Wiley and Sons, New York (1975)

    MATH  Google Scholar 

  23. Heath, M., Bowyer, K., Kopans, D., Moore, R., Kegelmeyer, P.J.: The digital database for screening mammography. In: International Workshop on Dig. Mammography (2000)

    Google Scholar 

  24. Hinneburg, A., Keim, D.A.: An efficient approach to clustering in large multimedia databases with noise. In: Knowledge Discovery and Data Mining, pp. 58–65 (1998)

    Google Scholar 

  25. Kaski, S., Honkela, T., Lagus, K., Kohonen, T.: Websom—self-organizing maps of document collections. Neurocomputing 21(1), 101–117 (1998)

    Article  MATH  Google Scholar 

  26. Kaufman, L., Rousseeuw, P.J.: Clustering by means of medoids. In: Statistical Data Analysis Based on the L1-Norm and Related Methods, pp. 405–416. Y. Dodge (1987)

    Google Scholar 

  27. Kaufman, L., Rousseeuw, P.J.: Finding groups in data: An introduction to cluster analysis. John Wiley & Sons, Chichester (1990)

    Google Scholar 

  28. Kohonen, T.: The self-organizing map. Proc. of the IEEE 78, 1464–1480 (1990)

    Article  Google Scholar 

  29. Kolodner, J.: Reconstructive memory, a computer model. Cognitive Science 7, 281–328 (1983)

    Article  Google Scholar 

  30. Laaksonen, J., Koskela, M., Oja, E.: Picsom: Self-organization maps for content-based image retrieval. In: Proceedings of International Joint Conference on NN (1999)

    Google Scholar 

  31. López de Mántaras, R., Plaza, E.: Case-based reasoning: An overview. AI Communications 10(1), 21–29 (1997)

    Google Scholar 

  32. Martin, F.: Case-Based Sequence Analysis in Dynamic, Imprecise, and Adversarial Domains. Ph.D thesis, Universitat Politècnica de Catalunya (2004)

    Google Scholar 

  33. Michalski, R.S.: Knowledge acquisition through conceptual clustering: A theoretical framework and an algorithm for partitioning data into conjunctive concepts. Technical Report 1026, LIIA, Ensais/Univ. Louis-Pasteur, Urbana, Illinois (1980)

    Google Scholar 

  34. Mujica, L.E., Vehí, J., Rodellar, J.: A hybrid system combining self organizing maps with case based reasoning in structural assessment. In: Artificial Intelligence Research and Development, vol. 131, pp. 173–180. IOS Press, Amsterdam (2005)

    Google Scholar 

  35. Nomoto, T., Matsumoto, Y.: An experimental comparison of supervised and unsupervised approaches to text summarization. In: First IEEE International Conference on Data Mining, p. 630 (2001)

    Google Scholar 

  36. Oliver, A., Freixenet, J., Bosch, A., Raba, D., Zwiggelaar, R.: Automatic classification of breast tissue. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3523, pp. 431–438. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  37. Oliver, A., Freixenet, J., Zwiggelaar, R.: Automatic classification of breast density. In: International Conference on Image Processing (2005)

    Google Scholar 

  38. Pelleg, D., Moore, A.: X-means: Extending K-means with efficient estimation of the number of clusters. In: Proceedings of the 17th International Conference of Machine Learning, pp. 727–734. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  39. Riesbeck, C.K., Schank, R.C.: Inside Case-Based Reasoning. Lawrence Erlbaum Associates, Cambridge (1989)

    Google Scholar 

  40. Salzberg, S.: A nearest hyperrectangle learning method. Machine Learning 6, 277–309 (1991)

    Google Scholar 

  41. Samuels, T.H.: Illustrated Breast Imaging Reporting and Data System BIRADS, 3rd edn. American College of Radiology Publications (1998)

    Google Scholar 

  42. Sheikholeslami, G., Chatterjee, S., Zhang, A.: WaveCluster: A multi-resolution clustering approach for very large spatial databases. In: Proceedings of 24th International Conference Very Large Data Bases, VLDB, pp. 428–439 (1998)

    Google Scholar 

  43. Suckling, J., Parker, J., Dance, D.R.: The mammographic image analysis society digital mammogram database. In: Gale, A.G. (ed.) Proceedings of 2nd Internat. Workshop on Digital Mammography, pp. 211–221 (1994)

    Google Scholar 

  44. Ultsch, A.: Self organized feature maps for monitoring and knowledge acquisition of a chemical process. In: International Conference on Artificial Neural Networks, pp. 864–867 (1993)

    Google Scholar 

  45. Vernet, D., Golobardes, E.: An unsupervised learning approach for case-based classifier systems. Expert Update. The Specialist Group on Artificial Intelligence 6(2), 37–42 (2003)

    Google Scholar 

  46. Villmann, T.: Neural networks approaches in medicine - a review of actual developments. In: Proceedings of European Symposium on Artificial Neural Networks, pp. 165–176 (2000)

    Google Scholar 

  47. Wang, W., Yang, J., Muntz, R.R.: STING: A statistical information grid approach to spatial data mining. The VLDB Journal, 186–195 (1997)

    Google Scholar 

  48. Wilson, D.R., Martinez, T.R.: Improved heterogeneus distance functions. Journal of Artificial Intelligence Research 6, 1–34 (1997)

    MATH  MathSciNet  Google Scholar 

  49. Yang, Q., Wu, J.: Keep it simple: A case-base maintenance policy based on clustering and information theory. In: Proceedings of the Canadian AI Conference, pp. 102–114 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fornells, A., Golobardes, E., Vernet, D., Corral, G. (2006). Unsupervised Case Memory Organization: Analysing Computational Time and Soft Computing Capabilities. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds) Advances in Case-Based Reasoning. ECCBR 2006. Lecture Notes in Computer Science(), vol 4106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11805816_19

Download citation

  • DOI: https://doi.org/10.1007/11805816_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36843-4

  • Online ISBN: 978-3-540-36846-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics