Skip to main content

Constructing Regularity Feature Trees for Solid Models

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4077))

Abstract

Approximate geometric models, e.g. as created by reverse engineering, describe the approximate shape of an object, but do not record the underlying design intent. Automatically inferring geometric aspects of the design intent, represented by feature trees and geometric constraints, enhances the utility of such models for downstream tasks. One approach to design intent detection in such models is to decompose them into regularity features. Geometric regularities such as symmetries may then be sought in each regularity feature, and subsequently be combined into a global, consistent description of the model’s geometric design intent. This paper describes a systematic approach for finding such regularity features based on recovering broken symmetries in the model. The output is a tree of regularity features for subsequent use in regularity detection and selection. Experimental results are given to demonstrate the operation and efficiency of the algorithm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bagali, S., Waggenspack, J.: A shortest path approach to wireframe to solid model conversion. In: Proc. 3rd ACM Symp. Solid Modeling and Appl., pp. 339–349 (1995)

    Google Scholar 

  2. Dong, X., Wozny, M.: A method for generating volumetric features from surface features. In: Proc. 1st ACM Symp. Solid Modeling and Appl., pp. 185–194 (1991)

    Google Scholar 

  3. Gao, C.H., Langbein, F.C., Marshall, A.D., Martin, R.R.: Local topological beautification of reverse engineered models. Computer-Aided Desisn 36(13), 1337–1355 (2004)

    Article  Google Scholar 

  4. Han, J., Pratt, M., Regli, W.: Manufacturing feature recognition from solid models: a status report. IEEE Trans. Robotics and Automation 6(6), 782–796 (2000)

    Article  Google Scholar 

  5. Inoue, K., Shimada, K., Chilaka, K.: Solid model reconstruction of wireframe CAD models based on topological embeddings of planar graphs. J. Mechanical Design 125(3), 434–442 (2003)

    Article  Google Scholar 

  6. Kim, Y.: Convex decomposition and solid geometric modeling. PhD thesis, Starnford University, USA (1990)

    Google Scholar 

  7. Langbein, F.C., Mills, B.I., Marshall, A.D., Martin, R.R.: Approximate geometric regularities. Int. J. Shape Modeling 7(2), 129–162 (2001)

    Article  Google Scholar 

  8. Langbein, F.C.: Beautification of reverse engineered geometric models. PhD thesis, Cardiff University, UK (2003)

    Google Scholar 

  9. Lequette, R.: Automatic construction of curvilinear solids from wireframe views. Computer-Aided Design 20(4), 171–179 (1988)

    Article  MATH  Google Scholar 

  10. Leyton, M.: A Generative Theory of Shape. LNCS, vol. 2145. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  11. Liu, S., Hu, S., Chen, Y., Sun, J.: Reconstruction of curved solids from engineering drawings. Computer-Aided Design 33(14), 1059–1072 (2001)

    Article  Google Scholar 

  12. Lockwood, E., Macmillan, R.: Geometric symmetry. Mathematical Intelligence 6(3), 63–67 (1984)

    Article  Google Scholar 

  13. Markowsky, G., Wesley, M.: Fleshing out wire frames. IBM J. Research and Development 24(5), 582–597 (1980)

    Article  MathSciNet  Google Scholar 

  14. Mills, B., Langbein, F., Marshall, A., Martin, R.: Approximate symmetry detection for reverse engineering. In: Proc. 6th ACM Symp. Solid Modeling and Appl., pp. 241–248 (2001)

    Google Scholar 

  15. Mills, B., Langbein, F., Marshall, A., Martin, R.: Estimate of frequencies of geometric regularities for use in reverse engineering of simple mechanical components. Tech. report GVG 2001-1, Dept. Computer Science, Cardiff University (2001)

    Google Scholar 

  16. Rappoport, A.: The extended convex differences tree (ECDT) representation for n-dimensional polyhedra. Intl. J. Comp. Geometry and Appl. 1(3), 227–241 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  17. Regli, W.: Geometric algorithms for recognition of features from solid models. PhD thesis, University of Maryland, USA (1995)

    Google Scholar 

  18. Sakurai, H., Dave, P.: Volume decomposition and feature recognition, Part II: curved objects. Computer-Aided Design 28(6-7), 519–537 (1996)

    Article  Google Scholar 

  19. Sandiford, D., Hinduja, S.: Construction of feature volumes using intersection of adjacent surfaces. Computer-Aided Design 33(6), 455–473 (2001)

    Article  MATH  Google Scholar 

  20. Sashikumar, V., Milind, S.: Reconstruction of feature volumes and feature suppression. In: Proc. 7th ACM Symp. Solid Modeling and Appl., pp. 60–71 (2002)

    Google Scholar 

  21. Sashikumar, V., Milind, S., Rahul, R.: Removal of blends from boundary representation models. In: Proc. 7th ACM Symp. Solid Modeling and Appl., pp. 83–94 (2002)

    Google Scholar 

  22. Shapiro, V., Vossler, D.: Separation for boundary to CSG conversion. ACM Trans. Graphics 12(1), 35–55 (1993)

    Article  MATH  Google Scholar 

  23. Sitharam, M., Oung, J.-J., Zhou, Y., Arbree, A.: Geometric constraints within feature hierarchies. Computer-Aided Design 38(1), 22–38 (2006)

    Article  Google Scholar 

  24. Vandenbrande, J.: Automatic recognition of Machinable Features in Solid Models. PhD thesis, University of Rochester, USA (1990)

    Google Scholar 

  25. Varady, T., Martin, R., Cox, J.: Reverse engineering of geometric models - an introduction. Computer-Aided Design 29(4), 255–268 (1997)

    Article  Google Scholar 

  26. Waco, D., Kim, Y.: Geometric reasoning for machining features using convex decomposition. Computer-Aided Design 26(6), 477–489 (1994)

    Article  MATH  Google Scholar 

  27. Woo, Y., Sakurai, H.: Recognition of maximal features by volume decomposition. Computer-Aided Design 34(3), 195–207 (2002)

    Article  Google Scholar 

  28. Woo, Y.: Fast cell-based decomposition and applications to solid modeling. Computer-Aided Design 35(11), 969–977 (2003)

    Article  Google Scholar 

  29. Xu, X., Hinduja, S.: Recognition of rough machining features in \(2\frac{1}{2}\) components. Computer-Aided Design 30(7), 503–516 (1998)

    Article  MATH  Google Scholar 

  30. Zhu, H., Menq, C.: B-rep model simplification by automatic fillet/round suppressing for efficient automatic feature recognition. Computer-Aided Design 34(2), 109–123 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, M., Langbein, F.C., Martin, R.R. (2006). Constructing Regularity Feature Trees for Solid Models. In: Kim, MS., Shimada, K. (eds) Geometric Modeling and Processing - GMP 2006. GMP 2006. Lecture Notes in Computer Science, vol 4077. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11802914_19

Download citation

  • DOI: https://doi.org/10.1007/11802914_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36711-6

  • Online ISBN: 978-3-540-36865-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics