Advertisement

Event-Driven Simulation Engine for Spiking Neural Networks on a Chip

  • Rodrigo Agis
  • Javier Díaz
  • Eduardo Ros
  • Richard Carrillo
  • Eva. M. Ortigosa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3985)

Abstract

The efficient simulation of spiking neural networks (SNN) remains as an open challenge. Current SNN computing engines are still far away of being able to efficiently simulate systems of millions of neurons. This contribution describes a computing scheme that takes full advantage of the massive parallel processing resources available at FPGA devices. The computing engine adopts an event-driven simulation scheme and an efficient next-event-to-go searching method to achieve high performance. We have designed a pipelined datapath in order to compute several events in parallel avoiding idle computing resources. The system is able to compute approximately 2.5 million spikes per second. The whole computing machine is composed only by an FPGA device and five external memory SRAM chips. Therefore the presented approach is of high interest for simulation experiments that require embedded simulation engines (for instance in robotic experiments with autonomous agents).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Graas, E.L., Brown, E.A., Lee, R.H.: An FPGA-based approach to high-speed simulation of conductance-based neuron models. Neuroinformatics 2, 417–435 (2004)CrossRefGoogle Scholar
  2. 2.
    Ros, E., Ortigosa, E.M., Agis, R., Carrillo, R., Prieto, A., Arnold, M.: Spiking neurons computing platform. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 471–478. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Ros, E., Ortigosa, E.M., Agis, R., Carrillo, R., Arnold, M.: Real-time computing platform for spiking neurons (RT-Spike). IEEE Transactions on Neural Networks (submitted, 2005)Google Scholar
  4. 4.
    Glackin, B., McGinnity, T.M., Maguire, L.P., Wu, Q.X., Belatreche, A.: A Novel Approach for the Implementation of Large Scale Spiking Neural Networks on FPGA Hardware. LNCS, pp. 552–563 (2005)Google Scholar
  5. 5.
    Ros, E., Carrillo, R., Ortigosa, E.M., Barbour, B., Agís, R.: Event-driven Simulation Scheme for Spiking Neural Models based on Characterization Look-up Tables. Neural Computation (submitted, 2005)Google Scholar
  6. 6.
    Delorme, A., Gautrais, J., van Rullen, R., Thorpe, S.: SpikeNET: A simulator for modelling large networks of integrate and fire neurons. In: Bower, J.M. (ed.) Computational Neuroscience: Trends in research 1999. Neurocomputing, vol. 26-27, pp. 989–996 (1999)Google Scholar
  7. 7.
    Delorme, A., Thorpe, S.: SpikeNET: An event-driven simulation package for modelling large networks of spiking neurons. Network: Computation in Neural Systems 14, 613–627 (2003)CrossRefGoogle Scholar
  8. 8.
    Mattia, M., Del Guidice, P.: Efficient event-driven simulation of large networks of spiking neurons and dynamical synapses. Neural Computation 12(10), 2305–2329 (2000)CrossRefGoogle Scholar
  9. 9.
    Reutimann, J., Guigliano, M., Fusi, S.: Event-driven simulation of spiking neurons with stochastic dynamics. Neural Computation 15, 811–830 (2003)CrossRefzbMATHGoogle Scholar
  10. 10.
    Makino, T.: A Discrete-Event Neural Network Simulator for General Neuron Models. Neural Comput. & Applic. 11, 210–223 (2003)CrossRefzbMATHGoogle Scholar
  11. 11.
    Schoenauer, T., Atasoy, S., Mehrtash, N., Klar, H.: NeuroPipe-Chip: A Digital Neuro-Processor for Spiking Neural Networks. IEEE Trans. Neural Networks 13(1), 205–213 (2002)CrossRefGoogle Scholar
  12. 12.
    Mehrtash, N., Jung, D., Hellmich, H.H., Schoenauer, T., Lu, V.T., Klar, H.: Synaptic Plasticity in Spiking Neural Networks (SP2INN): A System Approach. IEEE Transactions on Neural Networks 14(5) (2003)Google Scholar
  13. 13.
    Agís, R., Ros, E., Díaz, J., Carrillo, R., Rodriguez, R.: Memory Management in FPGA based platforms for event driven processing systems. In: Bertels, K., Cardoso, J.M.P., Vassiliadis, S. (eds.) ARC 2006. LNCS, vol. 3985. Springer, Heidelberg (submitted, 2006)Google Scholar
  14. 14.
    Boucheny, C., Carrillo, R., Ros, E., Coenen, O.J.-M.D.: Real-Time spiking neural network: an adaptive cerebellar model. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 136–144. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Xilinx (1994-2003), Available Online: http://www.xilinx.com

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Rodrigo Agis
    • 1
  • Javier Díaz
    • 1
  • Eduardo Ros
    • 1
  • Richard Carrillo
    • 1
  • Eva. M. Ortigosa
    • 1
  1. 1.Dpto. Architecture and computers technology of the University of GranadaSpain

Personalised recommendations