Iterative Modular Division over GF(2m): Novel Algorithm and Implementations on FPGA

  • Guerric Meurice de Dormale
  • Jean-Jacques Quisquater
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3985)


Public key cryptography is a concept used by many useful functionalities such as digital signature, encryption, key agreements, ... For those needs, elliptic curve cryptography is an attractive solution.

Cryptosystems based on elliptic curve need a costly modular division. Depending on the choice of coordinates, this operation is requested at each step of algorithms, during a precomputation phase or at the end of the whole computation. As a result, efficient modular division implementations are useful for both area constrained designs working in affine coordinates and high-speed processors.

For that purpose, this work highlights the most efficient iterative modular division algorithm and explores different time and area tradeoffs on FPGA. First, thanks to a novel algorithm, the computational time is divided by two with an area increase of one half. Second, using the Single-Instruction Multiple-Data feature of the selected algorithm, the area is divided by two with a doubling of the computational time.

To the best of our knowledge, it is the first report about an iterative digit-serial modular division algorithm, the first area and time tradeoff analysis of an iterative algorithm and the best result among the very few implementations on FPGA.


Elliptic Curve Systolic Array Irreducible Polynomial Elliptic Curve Cryptography Elliptic Curve Cryptosystems 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aigner, H., Bock, H., Hütter, M., Wolkerstorfer, J.: A Low-Cost ECC Coprocessor for Smartcards. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 107–118. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Brunner, H., Curiger, A., Hofstetter, M.: On Computing Multiplicative Inverses in GF(2m). IEEE Trans. on computers 42(8), 1010–1015 (1993)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Brent, R.P., Kung, H.T.: Systolic VLSI Arrays for Polynomial GCD Computation. IEEE Trans. on Computers 33(8), 731–736 (1984)CrossRefzbMATHGoogle Scholar
  4. 4.
    Blake, I.F., Seroussi, G., Smart, N.P.: Elliptic Curves in Cryptography. Lecture Notes Series, vol. 265. Cambridge University Press, Cambridge (1999)CrossRefzbMATHGoogle Scholar
  5. 5.
    Certicom Research, SEC 2: Recommended Elliptic Curve Domain Parameters, v1.0 (2000)Google Scholar
  6. 6.
    Daneshbeh, A.K., et al.: A Class of Unidirectional Bit Serial Systolic Architectures for Multiplicative Inversion and Division over GF(2m). Tr. on Comp. 54(3), 370–380 (2005)CrossRefzbMATHGoogle Scholar
  7. 7.
    Kim, C.H., Kwon, S., Kim, J.J., Hong, C.P.: A Compact and Fast Division Architecture for a Finite Field GF(2m). In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds.) ICCSA 2003. LNCS, vol. 2667, pp. 855–864. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Fong, K., Hankerson, D., López, J., Menezes, A.: Field Inversion and Point Halving Revisited. IEEE Trans. on Computers 53(8), 1047–1059 (2004)CrossRefGoogle Scholar
  9. 9.
    Guo, J.-H., Wang, C.-L.: Novel digit-serial systolic array implementation of Euclid’s algorithm for division in GF(2m). In: ISCAS 1998, pp. 478–481 (1998)Google Scholar
  10. 10.
    Gura, N., Shantz, S.C., Eberle, H., Gupta, S., Gupta, V., Finchelstein, D., et al.: An End-to-End Systems Approach to Elliptic Curve Cryptography. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 349–365. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Gutub, A.A.-A.: New Hardware Algorithms and Designs for Montgomery Modular Inverse Computation in Galois Fields GF(p) and GF(2n), Ph.D. Thesis (2002)Google Scholar
  12. 12.
    Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer Professional computing. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  13. 13.
    Hasan, M.A., Bhargava, V.K.: Bit-Serial Systolic Divider and Multiplier for Finite Fields GF(2m). IEEE Trans. on Computers 41(8), 972–980 (1992)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Itoh, T., Tsujii, S.: A Fast Algorithm for Computing Multiplicative Inverses in GF(2m) Using Normal Bases. Information and Comp. 78, 171–177 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Koblitz, N.: Elliptic curve cryptosystems. Math. of Comp. 48, 203–209 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Miller, V.: Uses of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)Google Scholar
  17. 17.
    U.S. Department of Commerce/National Institute of Standards and Technology (NIST), Digital Signature Standard (DSS), FIPS PUB 182-2change1 (2000)Google Scholar
  18. 18.
    Okeya, K., Sakurai, K.: Fast Multi-scalar Multiplication Methods on Elliptic Curves with Precomputation Strategy Using Montgomery Trick. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 564–578. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Stein, J.: Computational problems associated with Racah algebra. J. Computational Physics 1, 397–405 (1967)CrossRefzbMATHGoogle Scholar
  20. 20.
    Wu, C.-H., et al.: High-Speed, Low-Complexity Systolic Designs of Novel Iterative Division Algorithms in GF(2m). IEEE Trans. on Computers 53(3), 375–380 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Guerric Meurice de Dormale
    • 1
  • Jean-Jacques Quisquater
    • 1
  1. 1.UCL Crypto Group, DICEUniversité Catholique de LouvainLouvain-La-NeuveBelgium

Personalised recommendations