Providing QoS Guarantees in a NoC by Virtual Channel Reservation

  • Nikolay Kavaldjiev
  • Gerard J. M. Smit
  • Pascal T. Wolkotte
  • Pierre G. Jansen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3985)


Virtual channel reservation is a simple approach for providing guaranteed throughput services in a virtual channel network-on-chip. However, its performance is limited by the number of virtual channels per physical channels. In this paper we explore the limits of the approach and investigate how these limits depend on the routing algorithm, the traffic locality, the network topology and the network size. The results show the the approach can be applied in a network of size 10-by-10 nodes with four virtual channels per physical channel. The traffic locality has strong influence on the performance limits of the approach and can also help in reducing the communication energy cost by 50% to 70%. The type of the routing algorithm does not practically influence the performance limits.


Virtual Channel Network Distance Physical Channel Torus Topology Ring Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dally, W., Towles, B.: Route packets, not wires: on-chip interconnection networks. In: Proceedings of the 38th Conference on Design Automation (DAC 2001), pp. 684–689. ACM Press, New York (2001)Google Scholar
  2. 2.
    Dally, W.: Virtual-channel flow control. IEEE Transactions on Parallel and Distributed Systems, 3, 194–205 (1992)CrossRefGoogle Scholar
  3. 3.
    Goossens, K., van Meerbergen, J., Peeters, A., Wielage, R.: Networks on silicon: combining best-effort and guaranteed services. In: Proceedings of the Design, Automation and Test in Europe Conference (DATE 2002), pp. 423 – 425 (2002)Google Scholar
  4. 4.
    Millberg, M., Nilsson, E., Thid, R., Jantsch, A.: Guaranteed bandwidth using looped containers in temporally disjoint networks within the nostrum network on chip. In: Proceedings of the Design, Automation and Test in Europe Conference (DATE 2004), vol. 2, pp. 890–895. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  5. 5.
    Muttersbach, J., Villiger, T., Kaeslin, H., Felber, N., Fichtner, W.: Globally-asynchronous locally-synchronous architectures to simplify the design of on-chip systems. In: Proceedings of the 12-th Annual IEEE International ASIC/SOC Conference, pp. 317–321 (1999)Google Scholar
  6. 6.
    Wolkotte, P., Smit, G., Rauwerda, G.: An energy-efficient reconfigurable circuit switched network-on-chip. In: Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS 2005), pp. 155–161 (2005)Google Scholar
  7. 7.
    Felicijan, T., Furber, S.: An asynchronous on-chip network router with quality-of-service (qos) support. In: Proceedings of the IEEE International System-on-Chip Conference (SOCC 2004), pp. 274–277. IEEE Computer Society, Los Alamitos (2004)CrossRefGoogle Scholar
  8. 8.
    Kavaldjiev, N., Smit, G., Jansen, P.: A virtual channel router for on-chip networks. In: Proceedings of the IEEE International System-on-Chip Conference (SOCC 2004), pp. 289–293. IEEE Computer Society, Los Alamitos (2004)CrossRefGoogle Scholar
  9. 9.
    Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to algorithms, 2nd edn. MIT Press, Cambridge (2001)zbMATHGoogle Scholar
  10. 10.
    Rauwerda, G., Heysters, P., Smit, G.: Mapping wireless communication algorithms onto a reconfigurable architecture. Journal of Supercomputing 30, 263–282 (2004)CrossRefGoogle Scholar
  11. 11.
    Wolkotte, P., Smit, G., Smit, L.: Partitioning of a drm receiver. In: Proceedings of the 9th International OFDM-Workshop, pp. 299–304 (2004)Google Scholar
  12. 12.
    Wolkotte, P., Smit, G., Kavaldjiev, N., Becker, J., Becker, J.: Energy model of networks-on-chip and a bus. In: Proceedings of the International Symposium on System-on-Chip (SoC 2005), pp. 82–85 (2005)Google Scholar
  13. 13.
    Dally, W., Towles, B.: Principles and Practices of Interconnection Networks. In: The Morgan Kaufmann Series in Computer Architecture and Design. Morgan Kaufmann, San Francisco (2003)Google Scholar
  14. 14.
    Heysters, P., Smit, G., Molenkamp, E.: A flexible and energy-efficient coarse-grained reconfigurable architecture for mobile systems. Journal of Supercomputing 26, 283–308 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Nikolay Kavaldjiev
    • 1
  • Gerard J. M. Smit
    • 1
  • Pascal T. Wolkotte
    • 1
  • Pierre G. Jansen
    • 1
  1. 1.Faculty of Electrical Engineering, Mathematics and Computer ScienceUniversity of TwenteThe Netherlands

Personalised recommendations