Integrated Microsystems in Industrial Applications

  • Paddy J. French
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4017)


Since the 1960s etching of silicon has been used to make three-dimensional structures. The first devices were pressure sensors using a thin silicon membrane. More recently accelerometers and gyroscopes have been developed. All of these devices can be integrated with electronics enabling the introduction of extra functions such as self-test and self-calibration. A broader look at sensors shows a wealth of integrated devices. The critical issues are reliability and packaging if these devices are to find the applications. A number of silicon sensors have shown great commercial success. This paper will give a brief overview of the technologies and some examples of applications.


integrated sensors packaging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Petersen, K.E.: Silicon as a mechanical material. Proc. IEEE 70, 420–457 (1982)CrossRefGoogle Scholar
  2. 2.
    Nathanson, H.C., Wickstrom, R.A.: A resonant-gate silicon surface transistor with high-Q band pass properties. Appl. Phys. Lett. 7, 84 (1965)CrossRefGoogle Scholar
  3. 3.
    Bean, K.E.: Anisotropic etching of silicon. IEEE Trans Electron Devices ED-25, 1185–1193 (1978)CrossRefGoogle Scholar
  4. 4.
    Merlos, A., Acero, M., Bao, M.H., Bauselles, J., Esteve, J.: TMAH/IPA anisotropic etching characteristics. Sensors & Actuators A 37-38, 737–743 (1993)CrossRefGoogle Scholar
  5. 5.
    Howe, R.T., Muller, R.S.: Polycrystalline and amorphous silicon micromechanical beams: annealing and mechanical properties. Sensors and Actuators 4, 447–454 (1983)CrossRefGoogle Scholar
  6. 6.
    Fan, L.-S., Tai, Y.-C., Muller, R.S.: Pin joints, gears, springs, cranks and other novel micromechanical structures. In: Proceedings Transducers 1987, Tokyo, pp. 849–852 (1987)Google Scholar
  7. 7.
    Bartek, M., French, P.J., Wolffenbuttel, R.F.: Planarization in surface micromachining using selective epitaxial growth. In: Proceedings Eurosensors 1994, Toulouse, France, September 26-28, p. 210 (1994)Google Scholar
  8. 8.
    Palik, E.D., et al.: Study of the etch-stop mechanism in silicon. J. Electrochem. Soc. 137, 2051–2059 (1982)CrossRefGoogle Scholar
  9. 9.
    Kloek, B., Colllins, S.D., de Rooij, N.F., Smith, R.L.: Study of electrochemical etch-stop for high precision thickness control of silicon membranes. IEEE Electron Dev. 36, 663–669 (1989)CrossRefGoogle Scholar
  10. 10.
    Sarro, P.M., van Herwaarden, A.W.: Silicon cantilever beams fabricated by electrochemically controlled etching for sensor applications. J. Electrochem. Soc. 133, 1724–1729 (1986)CrossRefGoogle Scholar
  11. 11.
    French, P.J., Nagao, M., Esashi, M.: Electrochemical etch-stop in TMAH without externally applied bias. Sensors & Actuators A 56, 279–280 (1996)CrossRefGoogle Scholar
  12. 12.
    Ashruf, C.M.A., French, P.J., Bressers, P.M.M.C., Sarro, P.M., Kelly, J.J.: A new contactless electrochemical etch-stop based on gold/silicon/TMAH galvanic cell. Sensors & Actuators A 66, 284–291 (1998)CrossRefGoogle Scholar
  13. 13.
    Connolly, E.J., Sakarya, S., French, P.J., Xia, X.H., Kelly, J.J.: A pratical galvanic etch-stop in KOH using sodium hypochlorite. In: Proceedings IEEE MEMS 2003, Kyoto, Japan, January 2003, pp. 566–569 (2003)Google Scholar
  14. 14.
    Ohji, H., Trimp, P.J., French, P.J.: Fabrication of free standing structures using a single step electrochemical etching in hydrofluoric acid. Sensors and Actuators A73, 95–100 (1999)Google Scholar
  15. 15.
    Allen, H.V., Terry, S.C., de Bruin, D.W.: Accelerometer systems with self-testable features. Sensors and Actuators 20, 153–161 (1989)CrossRefGoogle Scholar
  16. 16.
    Rudolf, F., Jornod, A., Bergqvist, J., Leuthold, H.: Precision accelerometers with μg resolution. Sensors and Actuators A21-23, 297–302 (1990)Google Scholar
  17. 17.
    van Kampen, R.P., Vellekoop, M.J., Sarro, P.M., Wolffenbuttel, R.F.: Application of electrostatic feedback to critical damping of an integrated silicon capacitive accelerometer. Sensors and Actuators A43, 100–106 (1994)Google Scholar
  18. 18.
    Burrer, C., Esteve, J.: A novel resonant silicon accelerometer in bulk-micromachining technology. Sensors and Actuators A46-47, 185–189 (1995)Google Scholar
  19. 19.
    Lüdtke, O., Biefeld, V., Buhrdorf, A., Binder, J.: Laterally driven accelerometer fabricated in single crystalline silicon. Sensors and Actuators A82, 149–154 (2000)Google Scholar
  20. 20.
    Li, H., Bao, M., Yang, H., Shen, S., Lu, D.: A micromachined piezoresistive angular rate sensors with a composite beam structure. Sensors and Actuators A 72, 217–223 (1999)Google Scholar
  21. 21.
    Fujita, T., Maenaka, K., Mizuno, T., Matusoka, T., Kojima, T., Oshima, T., Maeda, M.: Disk-shaped bulk micromachined gyroscope with vacuum sealing. Sensors and Actuators A82, 198–204 (2000)Google Scholar
  22. 22.
    Craciun, G., Yang, H., Blauw, M.A., van der Drift, E., French, P.J.: Single step cryogenic SF6/O2 plasma etching process for the development of a novel quad beam gyroscope. In: Proceeding MME 2002, Sinaia, Romania, October 2002, pp. 55–28 (2002)Google Scholar
  23. 23.
    Tanase, D., Goosen, J.F.L., Trimp, P.J., French, P.J.: Multi-parameter sensor system with intravascular navigation for catheter/guide wire application. Sensors and Actuators A 97-98, 116–124 (2002)Google Scholar
  24. 24.
    Kälvesten, E., Smith, L., Tenerz, L., Stemme, G.: The first micromachined pressure sensor for cardiovasular pressure measurements. In: Proceedings MEMS 1998, Heidelberg, Germany, January 25-29, pp. 574–579 (1998)Google Scholar
  25. 25.
    Tsuchiya, T., Kageyama, Y., Funabashi, H., Sakata, J.: Vibrating gyroscope consisting of three layers of polysilicon thin films. In: Proceedings Transducers 1999, Sendai, Japan, June 1999, pp. 976–979 (1999)Google Scholar
  26. 26.
    van Kampen, R.P., Vellekoop, M.J., Sarro, P.M., Wolffenbuttel, R.F.: Application of electrostatic feedback to critical damping of an integrated silicon capacitive accelerometer. Sensors and Actuators 43, 100–106 (1994)CrossRefGoogle Scholar
  27. 27.
    van Oudheusden, B., Huijsing, J.H.: An electronic wind meter based on a silicon flow sensor. Sens. Actuators A 21–23, 420–424 (1990)Google Scholar
  28. 28.
    Makinwa, K.A.A., Huijsing, J.H.: A smart wind sensor using thermal sigma-delta modulation techniques. Sensors and Actuators 97-98, 15–20Google Scholar
  29. 29.
    Bakker, A.: High-accuracy CMOS smart temperature sensors, PhD thesis, TU Delft, The Netherlands (2000), ISBN 90-901-3643-6Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Paddy J. French
    • 1
  1. 1.EI/EWI-DIMESTU DelftDelftThe Netherlands

Personalised recommendations