Compilation and Simulation Tool Chain for Memory Aware Energy Optimizations

  • Manish Verma
  • Lars Wehmeyer
  • Robert Pyka
  • Peter Marwedel
  • Luca Benini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4017)


Memories are known to be the energy bottleneck of portable embedded devices. Numerous memory aware energy optimizations have been proposed. However, both the optimization and the validation are performed in an ad-hoc manner as a coherent optimizing compilation and simulation framework does not exist as yet. In this paper, we present such a framework for performing memory hierarchy aware energy optimization. Both the compiler and the simulator are configured from a single memory hierarchy description. Significant savings of up to 50% in the total energy dissipation are reported.


Flash Memory Simulation Framework Memory Hierarchy Memory Object Instruction Cache 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wulf, W.A., McKee, S.A.: Hitting the Memory Wall: Implications of the Obvious. IEEE Computer Architecture News 23 (1995)Google Scholar
  2. 2.
    Francesco, P., Marchal, P., Atienza, D., Benini, L., Catthoor, F., Mendias, M.: An Integrated Hardware/Software Approach for Run-Time Scratchpad Management. In: Proc. of DAC, San Deigo (2004)Google Scholar
  3. 3.
    ICD: Informatik Centrum Dortmund e.V.: ICD-C Compiler Development Framework,
  4. 4.
    ICD: Informatik Centrum Dortmund e.V.: LANCE Retargetable C Compiler,
  5. 5.
    Steinke, S., Wehmeyer, L., Lee, B.S., Marwedel, P.: Assigning program and data objects to scratchpad for energy reduction. In: Proc. of DATE, Paris, France (2002)Google Scholar
  6. 6.
    Verma, M., Wehmeyer, L., Marwedel, P.: Dynamic Overlay of Scratchpad Memory for Energy Minimization. In: Proc. of CODES+ISSS, Stockholm, Sweden (2004)Google Scholar
  7. 7.
    Verma, M., Steinke, S., Marwedel, P.: Data Partitioning for Maximal Scratchpad Usage. In: Proc. of ASPDAC (2003)Google Scholar
  8. 8.
    Wehmeyer, L., Helmig, U., Marwedel, P.: Compiler-optimized Usage of Partitioned Memories. In: Proceedings of the 3rd Workshop on Memory Performance Issues (WMPI2004). ACM International Conference Prodeedings Series, pp. 114–120 (2004), ISBN: 1-59593-040Google Scholar
  9. 9.
    Verma, M., Wehmeyer, L., Marwedel, P.: Cache-aware Scratchpad Allocation Algorihm. In: Proc. of DATE, Paris, France (2004)Google Scholar
  10. 10.
    Wehmeyer, L.: Fast, Efficient and Predictable Memory Accesses – Optimization algorithms for memory architecture aware compilation. Ph.D.-thesis (unpublished, 2005)Google Scholar
  11. 11.
    ATMEL: Atmel Corporation,
  12. 12.
    Steinke, S., Knauer, M., Wehmeyer, L., Marwedel, P.: An Accurate and Fine Grain Instruction-Level Energy Model Supporting Software Optimizations. In: Proc. of PATMOS, Yverdon-Les-Bains, Switzerland (2001)Google Scholar
  13. 13.
    Department of Computer Science XII, University of Dortmund: MACC: Memory Aware C Compilation Framework,

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Manish Verma
    • 1
  • Lars Wehmeyer
    • 1
  • Robert Pyka
    • 1
  • Peter Marwedel
    • 1
  • Luca Benini
    • 2
  1. 1.Department of Computer Science XIIUniversity of DortmundDortmundGermany
  2. 2.DEISUniversity of BolognaBolognaItaly

Personalised recommendations