Low-Power, High-Performance TTA Processor for 1024-Point Fast Fourier Transform

  • Teemu Pitkänen
  • Risto Mäkinen
  • Jari Heikkinen
  • Tero Partanen
  • Jarmo Takala
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4017)


Transport Triggered Architecture (TTA) offers a cost-effective trade-off between the size and performance of ASICs and the programmability of general-purpose processors. This paper presents a study where a high performance, low power TTA processor was customized for a 1024-point complex-valued fast Fourier transform (FFT). The proposed processor consumes only 1.55 μJ of energy for a 1024-point FFT. Compared to other reported FFT implementations with reasonable performance, the proposed design shows a significant improvement in energy-efficiency.


Fast Fourier Transform Field Programmable Gate Array Very Long Instruction Word Twiddle Factor Code Compression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weste, N., Eshraghian, K.: Principles of CMOS VLSI Design: A Systems Perspective. Addison-Wesley, Reading (1985)Google Scholar
  2. 2.
    Chandrakasan, A., Sheng, S., Brodersen, R.: Low-power CMOS digital design. IEEE Journal of Solid State Circuits 27, 473–483 (1992)CrossRefGoogle Scholar
  3. 3.
    Reeves, K., Sienski, K., Field, C.: Reconfigurable hardware accelerator for embedded DSP. In: Schewel, J., Athanas, P.M., Bove, V.M., Watson, J. (eds.) Proc. SPIE High-Speed Comp. Dig. Sig. Proc. Filtering Using Reconf. Logic, Boston, MA, vol. 2914, pp. 332–340 (1996)Google Scholar
  4. 4.
    Chang, A., Dally, W.: Explaining the gap between ASIC and custom power: A custom perspective. In: Proc. IEEE DAC, Anaheim, CA, pp. 281–284 (2005)Google Scholar
  5. 5.
    Baas, B.M.: A low-power, high-performance, 1024-point FFT processor. IEEE Solid State Circuits 43, 380–387 (1999)CrossRefGoogle Scholar
  6. 6.
    Zhao, Y., Erdogan, A., Arslan, T.: A low-power and domain-specific reconfigurable fft fabric for system-on-chip applications. In: Proc. 19th IEEE Parallel and Distrubuted Prosessing Symp. Reconf. Logic, Denver, CO (2005)Google Scholar
  7. 7.
    Lin, Y.T., Tsai, P.Y., Chiueh, T.D.: Low-power variable-length fast fourier transform processor. In: Proc. IEE Computers and Digital Techniques, vol. 152, pp. 499–506 (2005)Google Scholar
  8. 8.
    Wang, A., Chandrakasan, A.: A 180-mV subthreshold FFT processor using a minimum energy design methodology. IEEE J. Solid State Circuits 40, 310–319 (2005)CrossRefGoogle Scholar
  9. 9.
    Granata, J., Conner, M., Tolimieri, R.: Recursive fast algorithms and the role of the tensor product. IEEE Trans. Signal Processing 40, 2921–2930 (1992)zbMATHCrossRefGoogle Scholar
  10. 10.
    Corporaal, H.: Microprocessor Architectures: From VLIW to TTA. John Wiley & Sons, Chichester (1997)Google Scholar
  11. 11.
    Mäkinen, R.: Fast Fourier transform on transport triggered architectures. Master’s thesis, Tampere Univ. Tech., Tampere, Finland (2005)Google Scholar
  12. 12.
    Wanhammar, L.: DSP Integrated Circuits. Academic Press, San Diego (1999)Google Scholar
  13. 13.
    Lefurgy, C., Mudge, T.: Code compression for DSP. Technical Report CSE-TR-380-98, EECS Department, University of Michigan (1998)Google Scholar
  14. 14.
    Corporaal, H., Arnold, M.: Using transport triggered architectures for embedded processor design. Integrated Computer-Aided Eng. 5, 19–38 (1998)Google Scholar
  15. 15.
    Intel: StrongARM SA-110 Microprocessor for Portable Applications Brief Datasheet (1999)Google Scholar
  16. 16.
    Lim, S., Crosland, A.: Implementing FFT in an FPGA co-processor. In: The International Embedded Solutions Event (GPSx), Santa Clara, CA, pp. 230–233 (2004)Google Scholar
  17. 17.
    Agarwala, S., Anderson, T., Hill, A., Ales, M., Damodaran, R., Wiley, P., Mullinnix, S., Leach, J., Lell, A., Gill, M., Rajagopal, A., Chachad, A., Agarwala, M., Apostol, J., Krishnan, M., Duc-Bui, Quang-An, Nagaraj, N., Wolf, T., Elappuparackal, T.: A 600 MHz VLIW DSP. IEEE J. Solid State Circuits 37, 1532–1544 (2002)CrossRefGoogle Scholar
  18. 18.
    Rixner, S., Dally, W., Kapasi, U., Khailany, B., Lopez-Lagunas, A., Mattson, P., Owens, J.: A bandwidth-efficient architecture for media processing. In: Proc. Annual ACM/IEEE Int. Symp. Microarchitecture, Dallas, TX, pp. 3–13 (1998)Google Scholar
  19. 19.
    Texas Instruments, Inc. Dallas, TX: TMS320C64x DSP Library Programmer’s Reference (2003)Google Scholar
  20. 20.
    Deleganes, M., Douglas, J., Kommandur, B., Patyra, M.: Designing a 3 GHz, 130 nm, Intel® Pentium ®4 processor. Digest of Technical Papers Symp. VLSI Circuits, Honolulu, HI, pp. 230–233 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Teemu Pitkänen
    • 1
  • Risto Mäkinen
    • 1
  • Jari Heikkinen
    • 1
  • Tero Partanen
    • 1
  • Jarmo Takala
    • 1
  1. 1.Tampere University of TechnologyTampereFinland

Personalised recommendations