Skip to main content

Explorations in Declarative Lighting Design

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 4073))

Abstract

Declarative approaches to lighting design model image quality using an objective function that captures the desired visual properties of an object or scene. The value of the objective function is optimized for a particular camera configuration through the manipulation of the lighting parameters of a scene. We review the notion of declarative lighting design, and introduce LightOp, a tool by which the design of objective functions (the components and settings) and the application of different optimization techniques can be explored. We show how LightOp can be used to explore declarative lighting design through the realization of a number of extensions to existing approaches, including the application and evaluation of stochastic optimization; the use of backlighting to maximize edge enhancement; contrast modeling; and the use of a perceptually uniform color space.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barzel, R.: Lighting Controls for Computer Cinematography. Journal of Graphics Tool 2(1), 1–20 (1997)

    Google Scholar 

  2. Farugia, J.P., Peroche, B.: A progressive rendering algorithm using an adaptive perceptually based image metric. In: Eurographics conference proceedings (2004)

    Google Scholar 

  3. Gumhold, S.: Maximum entropy light source placement. IEEE Visualization, 275–282 (2002)

    Google Scholar 

  4. Hall, R.: Illumination and Color in Computer Generated Imagery. Monographs in Visual Communication. Springer, New York (1993)

    Google Scholar 

  5. Jean, P.F., Albin, S., Peroche, B.: A perceptual Adaptive Image Metric for Computer Graphics. In: Proc. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision WSCG 2004 (2004)

    Google Scholar 

  6. Jolivet, V., Plemenos, D., Poulingeas, P.: Inverse Direct Lighting with a Monte Carlo Method and Declarative Modelling. In: CG&GM 2002 (2002)

    Google Scholar 

  7. Kawai, J., Painter, J., Cohen, M.: Radioptimization – Goal Based Rendering. In: Proc. SIGGRAPH 1993, pp. 147–154 (1993)

    Google Scholar 

  8. Lee, C.H., Hao, X., Varshney, A.: Light Collages: Lighting Design for Effective Visualization. IEEE Visualization 2004, Austin (October 2004)

    Google Scholar 

  9. Marks, J., Andalman, B., Beardsley, P.A., Freeman, W., Gibson, S., Hodgins, J., Kang, T., Mirtich, B., Pfister, H., Ruml, W., Ryall, K., Seims, J., Shieber, S.: Design galleries: A general approach to setting parameters for computer graphics and animation. In: Proc. SIGGRAPH, pp. 389–400 (1997)

    Google Scholar 

  10. Markus, G.: Visual Computing. Springer, Heidelberg (1994)

    MATH  Google Scholar 

  11. Millerson, G.: Lighting for Television and Film, 3rd edn. Focal Press (2005)

    Google Scholar 

  12. McNamara, A.: Comparing real and synthetic scenes using human judgments of lightness. Doctoral Dissertation, Univ. Bristol (2000)

    Google Scholar 

  13. Poulin, P., Fournier, A.: Lights from highlights and shadows. In: Proceedings of the 1992 Symposium on interactive 3D Graphics, Cambridge, Massachusetts, United States, pp. 31–38. ACM Press, New York (1992)

    Chapter  Google Scholar 

  14. Poulin, P., Ratib, K., Jacques, M.: Sketching Shadows and Highlights to Position Lights. Computer Graphics International 1997 (CGI 1997), p. 56 (1997)

    Google Scholar 

  15. Reitsma, P.S.A., Pollard, N.S.: Perceptual metrics for character animation: sensitivity to errors in ballistic motion. ACM Transactions on Graph 22(3), 537–542 (2003)

    Article  Google Scholar 

  16. Schoeneman, C., Dorsey, J., Smits, B., Arvo, J., Greenburg, D.: Painting with light. In: Proc. SIGGRAPH, pp. 143–146 (1993)

    Google Scholar 

  17. Spillmann, L., John, S.W.: Visual Perception the Neurophisiological Foundations. Academic Press, London (1990)

    Google Scholar 

  18. Shacked, R., Lischinski, D.: Automatic Lighting Design using a perceptual quality metric. EuroGraphics 20(3) (2001)

    Google Scholar 

  19. Saito, T., Takahashi, T.: Comprehensible rendering of 3-D shapes. In: Proc. SIGGRAPH, pp. 197–206 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ha, H.N., Olivier, P. (2006). Explorations in Declarative Lighting Design. In: Butz, A., Fisher, B., Krüger, A., Olivier, P. (eds) Smart Graphics. SG 2006. Lecture Notes in Computer Science, vol 4073. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11795018_15

Download citation

  • DOI: https://doi.org/10.1007/11795018_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36293-7

  • Online ISBN: 978-3-540-36295-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics