Skip to main content

Hierarchical Multi-resolution Finite Element Model for Soft Body Simulation

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4072))

Abstract

The complexity of most surgical models has not allowed interactive simulations on standard computers. We propose a new framework to finely control the resolution of the models. This allows us to dynamically concentrate the computational force where it is most needed.

Given the segmented scan of an object to simulate, we first compute a bounding box and then recursively subdivide it where needed. The cells of this octree structure are labelled with mechanical properties based on material parameters and fill rate. An efficient physical simulation is then performed using hierarchical hexaedral finite elements. The object surface can be used for rendering and to apply boundary conditions.

Compared with traditional finite element approaches, our method dramatically simplifies the task of volume meshing in order to facilitate the using of patient specific models, and increases the propagation of the deformations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Taylor, R., Lavallée, S., Burdea, G., Mosges, R.: Computer integrated surgery: Technology and clinical applications. MIT Press, Cambridge (1996)

    Google Scholar 

  2. Cotin, S., Delingette, H., Clement, J.M., Tassetti, V., Marescaux, J., Ayache, N.: Volumetric deformable models for simulation of laparoscopic surgery. In: Computer Assisted Radiology (1996)

    Google Scholar 

  3. Debunne, G., Desbrun, M., Cani, M.P., Barr, A.H.: Dynamic real-time deformations using space and time adaptive sampling. In: SIGGRAPH 2001 (2001)

    Google Scholar 

  4. Picinbono, G., Delingette, H., Ayache, N.: Non-linear anisotropic elasticity for real time surgery simulation. Graph. Models (2003)

    Google Scholar 

  5. Etzmuß, O., Keckeisen, M., Straßer, W.: A Fast Finite Element Solution for Cloth Modelling. In: Proc. Pacific Graphics (2003)

    Google Scholar 

  6. Hauth, M., Straßer, W.: Corotational simulation of deformable solids. In: Proc. WSCG (2004)

    Google Scholar 

  7. Müller, M., Gross, M.: Interactive virtual materials. In: Proc. Graphics Interface (2004)

    Google Scholar 

  8. Nesme, M., Payan, Y., Faure, F.: Efficient, physically plausible finite elements. In: Eurographics (short papers), pp. 77–80 (2005)

    Google Scholar 

  9. Baraff, D., Witkin, A.: Large steps in cloth simulation. In: SIGGRAPH 1998 (1998)

    Google Scholar 

  10. Terzopoulos, D., Fleischer, K.: Modeling inelastic deformation: Viscolelasticity, plasticity, fracture. In: SIGGRAPH 1988 (1988)

    Google Scholar 

  11. Wu, X., Tendick, F.: Multigrid integration for interactive deformable body simulation. In: Cotin, S., Metaxas, D.N. (eds.) ISMS 2004. LNCS, vol. 3078, pp. 92–104. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Debunne, G., Desbrun, M., Barr, A.H., Cani, M.P.: Interactive multiresolution animation of deformable models. In: Eurographics Workshop on Computer Animation and Simulation (1999)

    Google Scholar 

  13. Wu, X., Downes, M.S., Goktekin, T., Tendick, F.: Adaptive nonlinear finite elements for deformable body simulation using dynamic progressive meshe. In: Proceedings of EG 2001 (2001)

    Google Scholar 

  14. Nikishkov, G.P.: Finite element algorithm with adaptive quadtree-octree mesh refinement. ANZIAM J. 46(E), C15–C28 (2005)

    MathSciNet  Google Scholar 

  15. Stollnitz, E.J., DeRose, T.D., Salesin, D.H.: Wavelets for Computer Graphics: Theory and Applications. Morgan Kaufmann Publishers, Inc., San Francisco (1996)

    Google Scholar 

  16. Gortler, S.J., Cohen, M.F.: Hierarchical and variational geometric modeling with wavelets. In: SI3D 1995 (1995)

    Google Scholar 

  17. Grinspun, E., Krysl, P., Schröder, P.: Charms: A simple framework for adaptive simulation. In: SIGGRAPH 2002 (2002)

    Google Scholar 

  18. Capell, S., Green, S., Curless, B., Duchamp, T., Popovi, Z.: A multiresolution framework for dynamic deformations. In: SCA 2002 (2002)

    Google Scholar 

  19. Bathe, K.J.: Finite Element Procedures in Engeneering Analysis. Prentice-Hall, Inc., Englewood Cliffs (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nesme, M., Faure, F., Payan, Y. (2006). Hierarchical Multi-resolution Finite Element Model for Soft Body Simulation. In: Harders, M., Székely, G. (eds) Biomedical Simulation. ISBMS 2006. Lecture Notes in Computer Science, vol 4072. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11790273_5

Download citation

  • DOI: https://doi.org/10.1007/11790273_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36009-4

  • Online ISBN: 978-3-540-36010-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics