Skip to main content

Mining a New Fault-Tolerant Pattern Type as an Alternative to Formal Concept Discovery

  • Conference paper
Conceptual Structures: Inspiration and Application (ICCS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4068))

Included in the following conference series:

Abstract

Formal concept analysis has been proved to be useful to support knowledge discovery from boolean matrices. In many applications, such 0/1 data have to be computed from experimental data and it is common to miss some one values. Therefore, we extend formal concepts towards fault-tolerance. We define the DR-bi-set pattern domain by allowing some zero values to be inside the pattern. Crucial properties of formal concepts are preserved (number of zero values bounded on objects and attributes, maximality and availability of functions which “connect” the set components). DR-bi-sets are defined by constraints which are actively used by our correct and complete algorithm. Experimentation on both synthetic and real data validates the added-value of the DR-bi-sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Besson, J., Robardet, C., Boulicaut, J.-F.: Mining formal concepts with a bounded number of exceptions from transactional data. In: Goethals, B., Siebes, A. (eds.) KDID 2004. LNCS, vol. 3377, pp. 33–45. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Besson, J., Robardet, C., Boulicaut, J.-F., Rome, S.: Constraint-based bi-set mining for biologically relevant pattern discovery in microarray data. IDA journal 9(1), 59–82 (2005)

    Google Scholar 

  3. Blake, C., Merz, C.: UCI repository of machine learning databases (1998)

    Google Scholar 

  4. Bucila, C., Gehrke, J.E., Kifer, D., White, W.: Dualminer: A dual-pruning algorithm for itemsets with constraints. In: ACM SIGKDD, pp. 42–51 (2002)

    Google Scholar 

  5. François, P., Robert, C., Cremilleux, B., Bucharles, C., Demongeot, J.: Variables processing in expert system building: application to the aetiological diagnosis of infantile meningitis. Med. Inf. 15(2), 115–124 (1990)

    Article  Google Scholar 

  6. Ganter, B., Stumme, G., Wille, R. (eds.): Formal Concept Analysis, Foundations and Applications. LNCS (LNAI), vol. 3626. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  7. Gionis, A., Mannila, H., Seppänen, J.K.: Geometric and combinatorial tiles in 0-1 data. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 173–184. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Guenoche, A., Mechelen, I.V.: Galois approach to the induction of concepts. Categories and concepts: Theorical views and inductive data analysis, 287–308 (1993)

    Google Scholar 

  9. Hereth, J., Stumme, G., Wille, R., Wille, U.: Conceptual knowledge discovery and data analysis. In: ICCS 2000, pp. 421–437 (2000)

    Google Scholar 

  10. Kuznetsov, S.O., Obiedkov, S.A.: Comparing performance of algorithms for generating concept lattices. JETAI 14 (2-3), 189–216 (2002)

    Article  MATH  Google Scholar 

  11. Nguifo, E.M., Duquenne, V., Liquiere, M.: Concept lattice-based knowledge discovery in databases. JETAI 14(2-3), 75–79 (2002)

    Article  Google Scholar 

  12. Pei, J., Tung, A.K.H., Han, J.: Fault-tolerant frequent pattern mining: Problems and challenges. In: DMKD, Workshop (2001)

    Google Scholar 

  13. Pensa, R.G., Boulicaut, J.-F.: Towards fault-tolerant formal concept analysis. In: Bandini, S., Manzoni, S. (eds.) AI*IA 2005. LNCS (LNAI), vol. 3673, pp. 212–223. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Seppänen, J.K., Mannila, H.: Dense itemsets. In: ACM SIGKDD 2004, pp. 683–688 (2004)

    Google Scholar 

  15. Stumme, G., Taouil, R., Bastide, Y., Pasqier, N., Lakhal, L.: Computing iceberg concept lattices with TITANIC. DKE 42, 189–222 (2002)

    Article  MATH  Google Scholar 

  16. Ventos, V., Soldano, H., Lamadon, T.: Alpha galois lattices. In: ICDM IEEE, pp. 555–558 (2004)

    Google Scholar 

  17. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered sets, pp. 445–470. Reidel (1982)

    Google Scholar 

  18. Yang, C., Fayyad, U., Bradley, P.S.: Efficient discovery of error-tolerant frequent itemsets in high dimensions. In: ACM SIGKDD, pp. 194–203. ACM Press, New York (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Besson, J., Robardet, C., Boulicaut, JF. (2006). Mining a New Fault-Tolerant Pattern Type as an Alternative to Formal Concept Discovery. In: Schärfe, H., Hitzler, P., Øhrstrøm, P. (eds) Conceptual Structures: Inspiration and Application. ICCS 2006. Lecture Notes in Computer Science(), vol 4068. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11787181_11

Download citation

  • DOI: https://doi.org/10.1007/11787181_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35893-0

  • Online ISBN: 978-3-540-35902-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics