Skip to main content

Rendering Optical Effects Based on Spectra Representation in Complex Scenes

  • Conference paper
Advances in Computer Graphics (CGI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4035))

Included in the following conference series:

Abstract

Rendering the structural color of natural objects or modern industrial products in the 3D environment is not possible with RGB-based graphics platforms and software and very time consuming, even with the most efficient spectra representation based methods previously proposed. Our framework allows computing full spectra light object interactions only when it is needed, i.e. for the part of the scene that requires simulating special spectra sensitive phenomena. Achieving the rendering of complex scenes with both the full spectra and RGB light and object interactions in a ray-tracer costs only some additional fractions of seconds. To prove the efficiency of our framework, we implemented a “Multilayer Film” in a simple ray-tracer. However, the framework is convenient for any complex lighting model, including diffraction or fluorescence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Devlin, K., Chalmers, A., Wilkie, A., Purgathofer, W.: State of the art report: Tone reproduction and physically based spectral rendering. In: Proceedings of Eurographics 2002, pp. 101–123 (2002)

    Google Scholar 

  2. Glassner, A.S.: Principles of Digital Image Synthesis. Morgan Kaufmann Publishers Inc., San Francisco (1995)

    Google Scholar 

  3. Sun, Y.: Rendering biological iridescences with rgb-based renderers. ACM Trans. Graph (2006)

    Google Scholar 

  4. Sun, Y., Fracchia, F.D., Drew, M.S., Calvert, T.W.: A spectrally based framework for realistic image synthesis. The Visual Computer 17(7), 429–444 (2001)

    Article  MATH  Google Scholar 

  5. Hall, R.A., Greenberg, D.P.: A testbed for realistic image synthesis, vol. 3(8), pp. 10–20 (1983)

    Google Scholar 

  6. Rougeron, G., Péroche, B.: An adaptive representation of spectral data for reflectance computations. In: Proceedings of the Eurographics Workshop on Rendering Techniques 1997, pp. 127–138. Springer, London (1997)

    Google Scholar 

  7. Iehl, J.C., Péroche, B.: An adaptive spectral rendering with a perceptual control. Comput. Graph. Forum 19(3) (2000)

    Google Scholar 

  8. Greenberg, D.P., Torrance, K.E., Shirley, P., Arvo, J., Lafortune, E., Ferwerda, J.A., Walter, B., Trumbore, B., Pattanaik, S., Foo, S.C.: A framework for realistic image synthesis. In: SIGGRAPH 1997: Proceedings of the 24th annual conference on Computer graphics and interactive techniques, pp. 477–494. ACM Press/Addison-Wesley, New York (1997)

    Chapter  Google Scholar 

  9. Glassner, A.S.: A model of fluorescence and phosphorescence. In: Proceedings of the 5th Eurographics Workshop on Rendering, pp. 57–68. Springer, Heidelberg (1994)

    Google Scholar 

  10. Stam, J.: Diffraction shaders. In: SIGGRAPH 1999: Proceedings of the 26th annual conference on Computer graphics and interactive techniques, pp. 101–110. ACM Press/Addison-Wesley Publishing Co, New York (1999)

    Chapter  Google Scholar 

  11. Cook, R.L., Torrance, K.E.: A reflectance model for computer graphics. ACM Trans. Graph. 1(1), 7–24 (1982)

    Article  Google Scholar 

  12. Meyer, G.W.: Wavelength selection for synthetic image generation. Comput. Vision Graph. Image Process 41(1), 57–79 (1988)

    Article  Google Scholar 

  13. Peercy, M.S.: Linear color representations for full speed spectral rendering. In: SIGGRAPH 1993: Proceedings of the 20th annual conference on Computer graphics and interactive techniques, pp. 191–198. ACM Press, New York (1993)

    Chapter  Google Scholar 

  14. Raso, M.G., Fournier, A.: A piecewise polynomial approach to shading using spectral distributions. In: Graphics Interface 1991, pp. 40–46. Canadian Information Processing Society, Toronto, Canada (1991)

    Google Scholar 

  15. Sun, Y., Fracchia, F.D., Calvert, T.W., Drew, M.S.: Deriving spectra from colors and rendering light interference. IEEE Comput. Graph. Appl. 19(4), 61–67 (1999)

    Article  Google Scholar 

  16. Hirayama, H., Kaneda, K., Yamashita, H., Yamaji, Y., Monden, Y.: Visualization of optical phenomena caused by multilayer films with complex refractive indices. In: PG 1999: Proceedings of the 7th Pacific Conference on Computer Graphics and Applications, Washington, DC, USA, pp. 128–137. IEEE Computer Society, Los Alamitos (1999)

    Google Scholar 

  17. Kinoshita, S., Yoshioka, S., Kawagoe, K.: Mechanisms of structural colour in the morpho butterfly: cooperation of regularity and irregularity in an iridescent scale. Proc. R. Soc. Lond. B 266 269(1499), 1417–1421 (2002)

    Article  Google Scholar 

  18. Baker, B.B., Copson, E.T.: The Mathematical Theory of Huygens’ Principle, 2nd edn. Oxford University Press, Oxford (1950)

    MATH  Google Scholar 

  19. Jensen, H.W.: Realistic Image Synthesis Using Photon Mapping. A.K. Peters, Ltd., Natick, MA, USA (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dong, W. (2006). Rendering Optical Effects Based on Spectra Representation in Complex Scenes. In: Nishita, T., Peng, Q., Seidel, HP. (eds) Advances in Computer Graphics. CGI 2006. Lecture Notes in Computer Science, vol 4035. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11784203_70

Download citation

  • DOI: https://doi.org/10.1007/11784203_70

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35638-7

  • Online ISBN: 978-3-540-35639-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics