MIP-Guided Vascular Image Visualization with Multi-Dimensional Transfer Function

  • Ming-Yuen Chan
  • Yingcai Wu
  • Huamin Qu
  • Albert C. S. Chung
  • Wilbur C. K. Wong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4035)


Direct volume rendering (DVR) is an effective way to visualize 3D vascular images for diagnosis of different vascular pathologies and planning of surgical treatments. Angiograms are typically noisy, fuzzy, and contain thin vessel structures. Therefore, some kinds of enhancements are usually needed before direct volume rendering can start. However, without visualizing the 3D structures in angiograms, users may find it difficult to select appropriate parameters and assess the effectiveness of the enhancement results. In addition, traditional enhancement techniques cannot easily separate the vessel voxels from other contextual structures with the same or very similar intensity. In this paper, we propose a framework to integrate enhancement and direct volume rendering into one visualization pipeline using multi-dimensional transfer function tailored for visualizing the curvilinear and line structures in angiograms. Furthermore, we present a feature preserving interpolation method to render very thin vessels which are usually missed using traditional approaches. To ease the difficulty in vessel selection, a MIP-guided method is suggested to assist the process.


Transfer Function Vascular Image Intensity Interval IEEE Visualization Direct Volume Rendering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dong, F., Clapworthy, G.J., Krokos, M.: Volume rendering of fine details within medical data. In: The proceedings of IEEE Visualization 2001, pp. 387–394 (2001)Google Scholar
  2. 2.
    Fang, S., Biddlecome, T., Tuceryan, M.: Image-based transfer function design for data exploration in volume visualization. In: The proceedings of IEEE Visualization 1998, pp. 319–326 (1998)Google Scholar
  3. 3.
    Fishman, E.K.: CT angiography and MDCT: Detection, characterization and staging of abdominal disease. In: RSNA (2000)Google Scholar
  4. 4.
    Hauser, H., Mroz, L., Bischi, Groller, E.: Two-level rendering, pp. 242–252 (2001)Google Scholar
  5. 5.
    Hladuvka, J., Konig, A., Groller, E.: Curvature-based tranfer functions for direct volume rendering. In: Proceeding of Spring Conference Computer Graphics, May 2000, pp. 58–65 (2000)Google Scholar
  6. 6.
    Huang, A., Nielson, G.M., Razdan, A., Farin, G.E., Baluch, D.P., Capco, D.G.: Thin structure segmentation and visualization in three-dimensional biomedical images: A shape-based approach. In: IEEE Trans. on Visualization and Computer Graphics, vol. 12, pp. 93–102 (2006)Google Scholar
  7. 7.
    Kanitsar, A., Fleischmann, D., Wegenkittl, R., Felkel, P., GrSller, E.: CPR - curved planar reformation. In: The proceedings of IEEE Visualization 2002, pp. 37–44 (2002)Google Scholar
  8. 8.
    Kindlmann, G., Durkin, J.W.: Semi-automatic generation of transfer functions for direct volume rendering. In: IEEE Symposium On Volume Visualization, pp. 79–86 (1998)Google Scholar
  9. 9.
    Kirbas, C., Quek, F.: A review of vessel extraction techniques and algorithms. ACM Computing Surveys 36(2), 81–121 (2004)CrossRefGoogle Scholar
  10. 10.
    Kniss, J., Kindlmann, G., Hansen, C.: Multidimensional transfer functions for interactive volume rendering. IEEE Trans. on Visualization and Computer Graphics 8(3) (2002)Google Scholar
  11. 11.
    Levory, M.: Display of surfaces from volume data. IEEE Computer Graphics and Applications 8(5), 29–37 (1988)CrossRefGoogle Scholar
  12. 12.
    Sato, Y., Nakajima, S., Atsumi, H., Koller, T., Gerig, G., Yoshida, S., Kikinis1, R.: 3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. In: IEEE Medical Image Analysis, pp. 143–168 (June 1998)Google Scholar
  13. 13.
    Sato, Y., Westin, C.-F., Bhalerao, A., Nakajima, S., Shiraga, N., Tamura, S., Kikinis, R.: Tissue classification based on 3d local intensity structures for volume rendering. IEEE Trans. on Visualization and Computer Graphics 6(2), 160–180 (2000)CrossRefGoogle Scholar
  14. 14.
    Sen, P.: Silhouette maps for improved texture magnification. In: Eurographics Graphics Hardware (2004)Google Scholar
  15. 15.
    Straka, M., Cruz, M.C.A.L., Kochl, A., Sramek, M., Groller, E., Fleischmann, D.: The vesselglyph: Focus and context visualization in CT-Angiography. In: Proceedings of IEEE Visualization 2004 (2004)Google Scholar
  16. 16.
    Sun, Y., Parker, D.: Small vessel enhancement in MRA images using local maximum mean processing. IEEE Trans. on Image Processing 10(11) (November 2001)Google Scholar
  17. 17.
    Vega, F., Hastreiter, P., Tomandl, B., Nimsky, C., Greiner, G.: 3D visualization of intracranial aneurysms with multidimensional transfer functions. Bildverarbeitung fur die Medizin, 46–50 (2003)Google Scholar
  18. 18.
    Wong, W.C.S., Chung, A.C.S.: A review on enhancement techniques in 2D and 3D vascular images. Technical Report(HKUST-CS06-02), The Hong Kong University of Science and Technology (2002)Google Scholar
  19. 19.
    Zhou, J., Hinz, M., Tonnies, K.D.: Hybrid-focal region based rendering of medical data. Bildverarbeitung fur die Medizin, 113–116 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ming-Yuen Chan
    • 1
  • Yingcai Wu
    • 1
  • Huamin Qu
    • 1
  • Albert C. S. Chung
    • 1
    • 2
  • Wilbur C. K. Wong
    • 1
    • 2
  1. 1.Department of Computer Science 
  2. 2.Lo Kwee-Seong Medical Image Analysis LaboratoryThe Hong Kong University of Science and TechnologyClear Water Bay, Hong Kong

Personalised recommendations