Skip to main content

Simulating Pedestrian Behavior with Potential Fields

  • Conference paper
Advances in Computer Graphics (CGI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4035))

Included in the following conference series:

Abstract

The main challenges of realistically simulating the displacement of humanoid pedestrians are twofold: they need to behave realistically and they should accomplish their tasks. Here we present a field potential formalism, based upon boundary value problems, that allows a group of synthetic actors to move negotiating space, avoiding collisions, attaining goals in prescribed sequences while at same time producing very individual paths. The individuality of each pedestrian can be set by changing its inner field parameters. This leads to a broad range of possible behaviors without jeopardizing its task performance. Simulate situations as behavior in corridors, collision avoidance and competition for a goal are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shao, W., Terzopoulos, D.: Autonomous pedestrians. In: ACM SIGGRAPH/Eurograph symposium on Computer Animation, pp. 19–28 (2005)

    Google Scholar 

  2. Torres, J.A., Nedel, L.P., Bordini, R.H.: Using the BDI Architecture to Produce Autonomous Characters in Virtual Worlds. In: Rist, T., Aylett, R.S., Ballin, D., Rickel, J. (eds.) IVA 2003. LNCS, vol. 2792, pp. 197–201. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Lengyel, J., Reichert, M., Donald, B.R., Greenberg, D.P.: Real-time robot motion planning using rasterizing computer graphics hardware. Computer Graphics 24(4), 327–335 (1990)

    Article  Google Scholar 

  4. Kuffner, J.J.: Goal-directed navigation for animated characters using real-time path planning and control. In: Magnenat-Thalmann, N., Thalmann, D. (eds.) CAPTECH 1998. LNCS, vol. 1537, pp. 171–186. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  5. Metoyer, R.A., Hodgins, J.K.: Reactive pedestrian path following from examples. The Visual Computer 20(10), 635–649 (2004)

    Article  Google Scholar 

  6. Kavraki, L., Svestka, P., Latombe, J.C., Overmars, M.: Probabilistic roadmaps for path planning in high-dimensional configuration space. IEEE Transactions on Robotics and Automation 12(4), 566–580 (1996)

    Article  Google Scholar 

  7. LaValle, S.: Rapidly-exploring random trees: A new tool for path planning. Technical Report 98-11, Computer Science Dept., Iowa State University (1998)

    Google Scholar 

  8. Choi, M.G., Lee, J., Shin, S.Y.: Planning biped locomotion using motion capture data and probabilistic roadmaps. ACM Trans. Graph. 22(2), 182–203 (2003)

    Article  Google Scholar 

  9. Khatib, O.: Commande dynamique dans l’espace opérational des robots manipulaters en présence d’obstacles. PhD thesis, École Nationale Supérieure de l’Aéronatique et de l’Espace, France (1980)

    Google Scholar 

  10. Connolly, C., Grupen, R.: On the applications of harmonic functions to robotics. International Journal of Robotic Systems 10, 931–946 (1993)

    Article  MATH  Google Scholar 

  11. Trevisan, M., Idiart, M.A., Prestes, E., Engel, P.M.: Exploratory navigation based on dynamic boundary value problems. Journal of Intelligent and Robotic Systems (accepted for publication, 2006)

    Google Scholar 

  12. Prestes, E., Engel, P.M., Trevisan, M., Idiart, M.A.: Exploration method using harmonic functions. Robotics and Autonomous Systems 40(1), 25–42 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dapper, F., Prestes, E., Idiart, M.A.P., Nedel, L.P. (2006). Simulating Pedestrian Behavior with Potential Fields. In: Nishita, T., Peng, Q., Seidel, HP. (eds) Advances in Computer Graphics. CGI 2006. Lecture Notes in Computer Science, vol 4035. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11784203_28

Download citation

  • DOI: https://doi.org/10.1007/11784203_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35638-7

  • Online ISBN: 978-3-540-35639-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics