Comprehending and Transferring Facial Expressions Based on Statistical Shape and Texture Models

  • Pengcheng Xi
  • Won-Sook Lee
  • Gustavo Frederico
  • Chris Joslin
  • Lihong Zhou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4035)


We introduce an efficient approach for representing a human face using a limited number of images. This compact representation allows for meaningful manipulation of the face. Principal Components Analysis (PCA) utilized in our research makes possible the separation of facial features so as to build statistical shape and texture models. Thus changing the model parameters can create images with different expressions and poses. By presenting newly created faces for reviewers’ marking in terms of intensities on masculinity, friendliness and attractiveness, we analyze relations between the parameters and intensities. With feature selections, we sort those parameters by their importance in deciding the three aforesaid aspects. Thus we are able to control the models and transform a new face image to be a naturally masculine, friendly or attractive one. In the PCA-based feature space, we can successfully transfer expressions from one subject onto a novel person’s face.


Feature Selection Facial Expression Facial Image Texture Parameter Texture Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Marvel, L.M., Hartwig, J.G.W.: A Survey of Image Compression Techniques and their Performance in Noisy Environments. Final report number: A409623, p. 98 (May 1996–January 1997)Google Scholar
  2. 2.
    Smith, L.I.: A tutorial on Principal Components Analysis, maintained by Cornell Unvier-sity, U.S.A. (February 26, 2002)Google Scholar
  3. 3.
    Yeung, K.Y., Ruzzo, W.: Principal Component Analysis for Clustering Gene Expression Data. Bioinformatics 17(9), 763–774 (2001)CrossRefGoogle Scholar
  4. 4.
    Schmidhuber, J.: Facial Beauty and Fractal Geometry, Technical report. IDSIA-28-98, IDSIA, Corso Elvezia 36, 6900 Lugano, Switzerland (1998)Google Scholar
  5. 5.
    Liu, Z., Shan, Y., Zhang, Z.: Expressive Expression Mapping with Ratio Images. In: Computer Graphics, Siggraph, pp. 271–276 (August 2001)Google Scholar
  6. 6.
    Zhang, Q., Liu, Z., Guo, B., Terzopoulos, D., Shum, H.: Geometry-Driven Photorealistic Facial Expression Synthesis. IEEE Trans. on Visual. and Comp. Graph. 12(1), 48–60 (2006)CrossRefGoogle Scholar
  7. 7.
    Fink, B., Penton-Voak, I.: Evolutionary Psychology of Facial Attractiveness, Current directions in psychological sciences, vol. 11(5), pp. 154–158. Blackwell Publishing, Malden (2002)Google Scholar
  8. 8.
    Johnston, V.S., Hagel, R., Franklin, M., Fink, B., Grammer, K.: Male Facial Attractive-ness Evidence for Hormone-Meditated Adaptive Design, Evolution and human behavior 22, pp. 251–267. Elsevier, Amsterdam (2001)Google Scholar
  9. 9.
    O’Toole, A.J., Price, T., Vetter, T., Bartlett, J.C., Blanz, V.: Three-Dimensional Shape and Two-Dimensional Surface Textures of Human Faces: The Role of “Averages” in At-tractiveness and Age. Im. and Vis. Comput. Journ. 18, 9–19 (1999)CrossRefGoogle Scholar
  10. 10.
    Rowland, D., Perrett, A.D.I.: Manipulating Facial Appearance through Shape and Color. IEEE Computer Graphics and Applications 15(5), 70–76 (1995)CrossRefGoogle Scholar
  11. 11.
    Lanitis, A., Taylor, C.J., Cootes, T.F.: Automatic Interpretation and Coding of Face Images Using Flexible Models. IEEE Trans. on PAMI 19(7), 743–756 (1997)Google Scholar
  12. 12.
    Vetter, T., Poggio, T.: Linear Object Classes and Image Synthesis from a Single Example Image. IEEE Trans. on PAMI 19(7), 733–742 (1997)Google Scholar
  13. 13.
    Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active Appearance Models. IEEE Trans. on PAMI 23(6), 681–685 (2001)Google Scholar
  14. 14.
    Cootes, T.F., Taylor, C.J.: Statistical Models of Appearance for Computer Vision, Tech-nical report, University of Manchester, UK (1999)Google Scholar
  15. 15.
    Tian, Y.L., Kanade, T., Cohn, J.F.: Recognizing Action Units for Facial Expression Analysis. IEEE Trans. on PAMI 23(2), 97–115 (2001)Google Scholar
  16. 16.
    Ekman, P., Friesen, W.V.: Facial Action Coding System: A Technique for the Measurement of Facial Movement. Consulting Psychologists Press, Palo Alto, CA (1978)Google Scholar
  17. 17.
    Lee, W.-S., Thalmann, N.M.: Head Modeling from Pictures and Morphing in 3D with Image Metamorphosis Based on Triangulation. In: Magnenat-Thalmann, N., Thalmann, D. (eds.) CAPTECH 1998. LNCS, vol. 1537, pp. 254–267. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  18. 18.
    Goto, T., Lee, W., Magnenat-Thalmann, N.: Facial Feature Extraction for Quick 3D Face Modeling, Signal processing: Image communication. Elsevier Science 17(3), 243–259 (2002)Google Scholar
  19. 19.
    Xi, P., Xu, T.: Knowledge-Based Active Appearance Model Applied in Medical Image Localization. In: Proc. of IEEE International conference on Mechatronics and automation (ICMA 2005), Niagara Fall, Canada, pp. 637–642 (2005)Google Scholar
  20. 20.
    Neumann, J., Schnorr, C., Steidl, G.: Combined SVM-Based Feature Selection and Classification. Machine Learning 61, 129–150 (2005)zbMATHCrossRefGoogle Scholar
  21. 21.
    Guyon, I., Elisseeff, A.: An Introduction to Variable and Feature Selection. Journal of Machine Learning Research, 1157–1182 (2003)Google Scholar
  22. 22.
    John, G., Kohavi, R., Pfleger, K.: Irrelevant Features and the Subset Selection Problem. In: Proc. of the 11th International Conference on Machine Learning, pp. 121–129 (1994)Google Scholar
  23. 23.
    Bradley, P.S., Mangasarian, O.L.: Feature Selection via Concave Minimization and Sup-port Vector Machines. In: Proc. of the 15th International Conference on Machine Learning, San Francisco, CA, USA, pp. 82–90 (1998)Google Scholar
  24. 24.
    Yu, L., Liu, H.: Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution. In: Proceedings of the Twentieth International Conference on Machine Learning (ICML 2003), pp. 856–863 (2003)Google Scholar
  25. 25.
    Langley, P.: Selection of Relevant Features in Machine Learning. In: Proc. of the AAAI Fall Symposium on Relevance, AAAI press, Menlo Park (1994)Google Scholar
  26. 26.
    Witten, H.I., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann, San FranciscoGoogle Scholar
  27. 27.
    Penrose, R.: A Generalized Inverse for Matrices. Proc. Cambridge Phil. Soc. 51, 406–413 (1955)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Zhou, C., Lin, X.: Facial Expressional Image Synthesis Controlled by Emotional Parameters. Pattern Recognition Letters 26, 2611–2627 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Pengcheng Xi
    • 1
  • Won-Sook Lee
    • 1
  • Gustavo Frederico
    • 1
  • Chris Joslin
    • 2
  • Lihong Zhou
    • 3
  1. 1.School of Information Technology and EngineeringUniversity of OttawaCanada
  2. 2.School of Information TechnologyCarleton UniversityOttawaCanada
  3. 3.Information Security CenterSoutheast UniversityNanjingChina

Personalised recommendations