Matching 2D Shapes Using U Descriptors

  • Zhanchuan Cai
  • Wei Sun
  • Dongxu Qi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4035)


In this paper, we propose a novel U-System-based approach for representing and matching similar shapes. U-system is a complete orthogonal piecewise k-degree polynomials in L 2[0,1]and it has some good properties,such as regeneration,convergence by group. Using U-system with finite items, it can be realized to accurate representation of shapes. This paper make shapes analysis in theory. We experimentally demonstrate that U descriptors are more suitable for representing and matching 2D shapes than Fourier descriptors.


Discrete Fourier Transform Machine Intelligence Shape Analysis Shape Descriptor Shape Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pavlidis, T.: A Review of Algorithms for Shape Analysis. Computer Vision, Graphics, and Image Processing 7, 243–258 (1978)CrossRefGoogle Scholar
  2. 2.
    Rui, Y., She, A.C., Huang, T.S.: Modified Fourier Descriptors for Shape Representation-A Practical Approach. In: Proc. First Int’l Workshop Image Databases and Multi Media Search, pp. 22–23 (August 1996)Google Scholar
  3. 3.
    Ma, W.-Y., Manjunath, B.S.: NeTra:A Toolbox for Navigating Large Image Databases. Multimedia Systems 7(3), 184–198 (1999)CrossRefGoogle Scholar
  4. 4.
    Berretti, S., Del Bimbo, A., Pala, P.: Retrieval by Shape Similarity with Perceptual Distance and Effective Indexing. IEEE Trans. Multimedia 2(4), 225–239 (2000)CrossRefGoogle Scholar
  5. 5.
    Bartolini, I., Ciaccia, P., Patella, M.: WARP: Accurate Retrieval of Shapes Using Phase of Fourier Descriptors and Time Warping Distance. IEEE Transactions on Pattern Analysis And Machine Intelligence 27(1), 142–147 (2005)CrossRefGoogle Scholar
  6. 6.
    Zhongkan, C.: Orthogonal functions and its applications (1982)Google Scholar
  7. 7.
    Harmuth, H.F.: Sequency Theory Foundations and Applications (1977)Google Scholar
  8. 8.
    Feng, Y., Qi, D.: A Sequence of Piecewise Orthogonal Polynomials. J. of SIAM J. Math. Anal. 15(4), 834–844 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Micchelli, C.A., Xu, Y.: Using the Matrix Refinement Equation for the Construction of Wavelets on Invariant Sets. Applied and Computational Harmonic Analysis 1, 391–401 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Battle, G.: Wavelets of Federbush-Lemarie type (preprint, 1993)Google Scholar
  11. 11.
    Federbush, P.: A mass zero cluster expansion. Part 1, The expansion, Comm.Math.Phys. 81, 327–340 (1981)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Dongxu, Q., Yuyu, F.: On the Convergence of Fourier-U Series. J. of University of Science and Technology of China, Issue of Math. 5, 7–17 (1983)Google Scholar
  13. 13.
    Dongxu, Q., Yuyu, F.: On the Orthogonal Complete system U. Acta.Scientiarum Naturalium Universitatis Jilinensis 2, 21–31 (1984)Google Scholar
  14. 14.
    Qishan, Z., Youguang, Z.: The Theory of Bridge Function and Its Application. National Defence Industry Press, Beijing (1992) (in Chinese)Google Scholar
  15. 15.
    Qi, D.: Frequency Spectrum Analysis in Digital Geometry (Special report), Hefei City (2005)Google Scholar
  16. 16.
    Qi, D., Tao, C., Song, R., Ma, H., Sun, W., Cai, Z.: Representation for a Group of Parametric Cures Based on the Orthogomal Complete U-system. J. of Computer (accepted, 2005)Google Scholar
  17. 17.
    Ma, H., Song, R., Tao, C., Qi, D.: Orthogonal Complete U-system and Its Application in CAGD. The first Korea-Chin Joint Conference on Geometric and Visual Computing (accepted, 2005)Google Scholar
  18. 18.
    Song, R., Ma, H., Qi, D.: A New Class of Complete Orthogonal Functions and Its Applications Based on U-system. In: The 4th International Conference on Wavelet Analysis and Its Applications (accepted, 2005)Google Scholar
  19. 19.
    Feng, Y.Y., Qi, D.X.: On the Harr and Walsh Systems on a Triangle.MRC Technical Summary Report No.2235, University of Wisconsin-Madison (1981)Google Scholar
  20. 20.
    Kauppinen, H., Seppanen, T., Pietikainen, M.: An Experimental Comparison of Autoregressive and Fourier-Based Descriptors in 2D Shape Classification. IEEE Trans. Pattern Analysis and Machine Intelligence 17(2), 201–207 (1997)CrossRefGoogle Scholar
  21. 21.
    Zhang, D., Lu, G.: A Comparative Study of Fourier Descriptors for Shape Representation and Retrieval. In: Proc. Fifth Asian Conf. Computer Vision(ACCV 2002), pp. 646–651 (January 2002)Google Scholar
  22. 22.
    Pelillo, M., Siddiqi, K., Zucker, S.: Matching hierarchical structures using association graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(11), 1105–1120 (1999)CrossRefGoogle Scholar
  23. 23.
    Sebastian, T.B., Klein, P.N., Kimia, B.B.: Recognition of shapes by editing shock graphs. In: Proceedings of the 8th International Conference on Computer Vision (2001), pp. 755–762 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Zhanchuan Cai
    • 1
  • Wei Sun
    • 1
  • Dongxu Qi
    • 1
    • 2
  1. 1.School of Information Science and TechnologySun Yat-sen UniversityGuangzhouP.R. China
  2. 2.Faculty of Information TechnologyMacao University of Science and TechnologyMacao

Personalised recommendations