Advertisement

Active Contours with Level-Set for Extracting Feature Curves from Triangular Meshes

  • Kyungha Min
  • Dimitris N. Metaxas
  • Moon-Ryul Jung
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4035)

Abstract

In this paper, we present a novel algorithm that extracts feature curves from triangular mesh domains. It is an extension of the level-set formulation of active contour model in image space to triangular mesh domains. We assume that meshes handled by our method are smooth overall, and feature curves of meshes are thin regions rather than mathematical curves such as found in mechanical parts. We use a simple and robust scheme that assigns feature weights to the vertices of a mesh. We define the energy functional of the active contour over the domain of triangular mesh and derive a level-set evolution equation that finds feature regions. The feature regions are skeletonized and smoothed to form a set of smooth feature curves on the mesh.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bischoff, S., Weyand, T., Kobbelt, L.: Snakes on triangular meshes. Bildverarbeitung fur die Medizin, 208–212 (2005)Google Scholar
  2. 2.
    Caselles, V., Kimmel, R., Sapiro, G.: On geodesic active contours. International Journal of Computer Vision 22(1), 61–79 (1997)zbMATHCrossRefGoogle Scholar
  3. 3.
    Chan, T., Vese, L.: An active contour model without edges. IEEE Transactions on Image Processing 10(2), 266–277 (2001)zbMATHCrossRefGoogle Scholar
  4. 4.
    Gumhold, S., Wang, X., McLeod, R.: Feature extraction from point clouds. In: Proceedings of 10th International Meshing Roundtable, pp. 293–305 (2001)Google Scholar
  5. 5.
    Jones, T., Durand, F., Desbrun, M.: Non-iterative, feature-preserving mesh smoothing. ACM Transcations on Graphics 22(3), 943–949 (2003)CrossRefGoogle Scholar
  6. 6.
    Jung, M., Kim, H.: Snaking across 3D meshes. In: Proceedings of Pacific Graphics, pp. 415–420 (2004)Google Scholar
  7. 7.
    Kalles, D., Morris, D.: A novel fast and reliable thinning algorithm. Imaging and Vision Computing 11(9), 588–603 (1993)CrossRefGoogle Scholar
  8. 8.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1(4), 321–331 (1987)CrossRefGoogle Scholar
  9. 9.
    Kobbelt, L.: Discrete fairing. In: Proceedings of 7th IMA Conference on the Mathematics of Surfaces, pp. 101–131 (1997)Google Scholar
  10. 10.
    Lee, Y., Lee, S.: Geometric snakes for triangular meshes. Computer Graphics Forum 21(3), 229–238 (2002)CrossRefGoogle Scholar
  11. 11.
    Malladi, R., Sethian, J., Vemuri, B.: Shape modeling with front propagation: A level set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(2), 158–175 (1995)CrossRefGoogle Scholar
  12. 12.
    Meyer, M., Desbrun, M., Schroder, P., Barr, A.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Proceedings of International Workshop on Visualization and Mathematics, pp. 35–58 (2002)Google Scholar
  13. 13.
    Milroy, M., Bradley, C., Vickers, G.: Segmentation of a wrap-around model using an active contour. Computer-Aided Design 29(4), 299–320 (1997)CrossRefGoogle Scholar
  14. 14.
    Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulation. Journal of Computational Physics 79(1), 12–49 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Pauly, M., Keiser, R., Gross, M.: Multi-scale extraction on point-sampled surfaces. Computer Graphics Forum 22(3), 281–289 (2003)CrossRefGoogle Scholar
  16. 16.
    Pavlidis, T.: A thinning algorithm for discrete binary images. Computer Vision, Graphics and Image Processing 13, 142–157 (1980)CrossRefGoogle Scholar
  17. 17.
    Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)zbMATHCrossRefGoogle Scholar
  18. 18.
    Taubin, G.: Estimating the tensor of curvature of a surface from a polyhedral approximation. In: Proceedings of International Conference on Computer Vision (ICCV), pp. 902–907 (1995)Google Scholar
  19. 19.
    Watanabe, K., Belyaev, A.: Detection of salient curvature features on polygonal surfaces. Computer Graphics Forum 20(3), 385–392 (2001)CrossRefGoogle Scholar
  20. 20.
    Zhao, H., Chan, T., Merriman, B., Osher, S.: A variational level set approach to multiphase motion. Journal of Computational Physics 127(1), 197–195 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Kyungha Min
    • 1
  • Dimitris N. Metaxas
    • 1
  • Moon-Ryul Jung
    • 2
  1. 1.CBIMRutgers Univ.USA
  2. 2.Dept of Media TechnologySogang Univ.Korea

Personalised recommendations