Advertisement

Manifold Parameterization

  • Lei Zhang
  • Ligang Liu
  • Zhongping Ji
  • Guojin Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4035)

Abstract

Manifold parameterization considers the problem of parameterizing a given triangular mesh onto another mesh surface, which could be particularly plane or sphere surfaces. In this paper we propose a unified framework for manifold parameterization between arbitrary meshes with identical genus. Our approach does this task by directly mapping the connectivity of the source mesh onto the target mesh surface without any intermediate domain and partition of the meshes. The connectivity graph of source mesh is used to approximate the geometry of target mesh using least squares meshes. A subset of user specified vertices are constrained to have the geometry information of the target mesh. The geometry of the mesh vertices is reconstructed while approximating the known geometry of the subset by positioning each vertex approximately at the center of its immediate neighbors. This leads to a sparse linear system which can be effectively solved. Our approach is simple and fast with less user interactions. Many experimental results and applications are presented to show the applicability and flexibility of the approach.

Keywords

Surface parameterization compatible meshes least squares mesh morphing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Floater, M.S., Hormann, K.: Surface parameterization: a tutorial and survey. In: Dodgson, N.A., Floater, M.S., Sabin, M.A. (eds.) Advances in Multiresolution for Geometric Modelling, pp. 157–186. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Praun, E., Sweldens, W., Schroder, P.: Consistent mesh parameterizations. In: Proceedings of SIGGRAPH (2001)Google Scholar
  3. 3.
    Kraevoy, V., Sheffer, A.: Cross-parameterization and compatible remeshing of 3d models. In: Proceedings of SIGGRAPH (2004)Google Scholar
  4. 4.
    Schreiner, J., Asirvatham, A., Praun, E., Hoppe, H.: Inter-surface mapping. In: Proceedings of SIGGRAPH (2004)Google Scholar
  5. 5.
    Lee, A., Dobkin, D., Sweldens, W., Schrder, P.: Multiresolution mesh morphing. In: Proceedings of SIGGRAPH, pp. 343–350 (1999)Google Scholar
  6. 6.
    Lee, A., Sweldens, W., Schroder, P., Cowsar, L., Dobkin, D.: Maps: Multiresolution adaptive parametrization of surfaces. In: Proceedings of SIGGRAPH, pp. 95–104 (1998)Google Scholar
  7. 7.
    Sorkine, O., Cohen-Or, D.: Least-squares meshes. In: Proceedings of Shape Modeling International, pp. 191–199 (2004)Google Scholar
  8. 8.
    Gu, X., Gortler, S., Hoppe, H.: Geometry images. In: Proceedings of SIGGRAPH, pp. 356–361 (2002)Google Scholar
  9. 9.
    Sheffer, A.: Spanning tree seams for reducing parameterization distortion of triangulated surfaces. In: Proceedings of Shape Modeling International, pp. 61–66 (2002)Google Scholar
  10. 10.
    Praun, E., Hoppe, H.: Spherical parameterization and remeshing. In: Proceedings of SIGGRAPH, pp. 340–350 (2003)Google Scholar
  11. 11.
    Gotsman, C., Gu, X., Sheffer, A.: Fundamentals of spherical parameterization for 3d meshes. In: Proceedings of SIGGRAPH, pp. 358–364 (2003)Google Scholar
  12. 12.
    Gu, X., Wang, Y., Chan, T.F., Thompson, P.M., Yau, S.-T.: Genus zero surface conformal mapping and its application to brain surface mapping. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 172–184. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Alexa, M.: Recent advances in mesh morphing. Computer Graphics Forum 21(2), 173–196 (2002)CrossRefGoogle Scholar
  14. 14.
    Alexa, M.: Merging polyhedral shapes with scattered features. The Visual Computer 16(1), 26–37 (2000)zbMATHCrossRefGoogle Scholar
  15. 15.
    Tutte, W.T.: How to draw a graph. Proceedings of London Mathematical Society, 743–768 (1963)Google Scholar
  16. 16.
    Floater, M.S.: Parameterization and smooth approximation of surface triangulations. Computer Aided Geometric Design 14(3), 231–250 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Lee, C.H., Varshney, A., Jacobs, D.: Mesh saliency. In: Proceedings of SIGGRAPH (2005)Google Scholar
  18. 18.
    Mount, D., Arya, S.: Ann: A library for approximate nearest neighbor searching (version 1.1) (2005), http://www.cs.umd.edu/~mount/ANN/
  19. 19.
    Cignoni, P., Rocchini, C., Scopigno, R.: Metro: measuring error on simplified surfaces. Computer Graphics Forum 17(2), 167–174 (1998)CrossRefGoogle Scholar
  20. 20.
    Turk, G.: Re-tiling polygonal surface. In: Proceedings of SIGGRAPH, pp. 55–64 (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Lei Zhang
    • 1
    • 2
  • Ligang Liu
    • 1
    • 2
  • Zhongping Ji
    • 1
    • 2
  • Guojin Wang
    • 1
    • 2
  1. 1.Department of MathematicsZhejiang UniversityHangzhouChina
  2. 2.State Key Lab of CAD&CGZhejiang UniversityHangzhouChina

Personalised recommendations