Some Programming Languages for Logspace and Ptime

  • Guillaume Bonfante
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4019)


We propose two characterizations of complexity classes by means of programming languages. The first concerns Logspace while the second leads to Ptime. This latter characterization shows that adding a choice command to a Ptime language (the language WHILE of Jones [1]) may not necessarily provide NPtime computations. The result is close to Cook in [2] who used “auxiliary push-down automata”. Logspace is obtained through a decidable mechanism of tiering. It is based on an analysis of deforestation due to Wadler in [3]. We get also a characterization of NLogspace.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jones, N.D.: LOGSPACE and PTIME characterized by programming languages. Theoretical Computer Science 228, 151–174 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Cook, S.: Characterizations of pushdown machines in terms of time-bounded computers. Journal of the ACM 18(1), 4–18 (1971)zbMATHCrossRefGoogle Scholar
  3. 3.
    Wadler, P.: Deforestation: Transforming programs to eliminate trees. In: Ganzinger, H. (ed.) ESOP 1988. LNCS, vol. 300, pp. 344–358. Springer, Heidelberg (1988)Google Scholar
  4. 4.
    Marion, J.-Y., Moyen, J.-Y.: Efficient first order functional program interpreter with time bound certifications. In: Parigot, M., Voronkov, A. (eds.) LPAR 2000. LNCS (LNAI), vol. 1955, pp. 25–42. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Bonfante, G., Marion, J.Y., Moyen, J.Y.: On lexicographic termination ordering with space bound certifications. In: Bjørner, D., Broy, M., Zamulin, A.V. (eds.) PSI 2001. LNCS, vol. 2244, Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Bonfante, G., Marion, J.Y., Moyen, J.Y.: Quasi-Interpretations and Small Space Bounds. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 150–164. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Bellantoni, S., Cook, S.: A new recursion-theoretic characterization of the poly-time functions. Computational Complexity 2, 97–110 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Leivant, D., Marion, J.Y.: Lambda calculus characterizations of poly-time. Fundamenta Informaticae 19, 167 (1993)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Leivant, D., Marion, J.Y.: Predicative functional recurrence and poly-space. In: Bidoit, M., Dauchet, M. (eds.) CAAP 1997, FASE 1997, and TAPSOFT 1997. LNCS, vol. 1214, pp. 369–380. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  10. 10.
    Leivant, D., Marion, J.Y.: A characterization of alternating log time by ramified recurrence. Theoretical Computer Science 236, 192–208 (2000)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Neergaard, P.: A functional language for logarithmic space. In: Chin, W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Hofmann, M.: Linear types and non-size-increasing polynomial time computation. In: Proceedings of the Fourteenth IEEE Symposium on Logic in Computer Science (LICS 1999), pp. 464–473 (1999)Google Scholar
  13. 13.
    Hofmann, M.: The strength of non size-increasing computation. In: Notices, A.S. (ed.) POPL 2002, vol. 37, pp. 260–269 (2002)Google Scholar
  14. 14.
    Baillot, P., Terui, K.: Light types for polynomial time computation in lambda-calculus. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  15. 15.
    Oitavem, I.: Characterizing nc with tier 0 pointers. Archive for Mathematical Logic 41, 35–47 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Oitavem, I.: A term rewriting characterization of the functions computable in polynomial space. Archive for Mathematical Logic 41(1), 35–47 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Jones, N.D.: Computability and complexity, from a programming perspective. MIT Press, Cambridge (1997)zbMATHGoogle Scholar
  18. 18.
    Grädel, E., Gurevich, Y.: Tailoring recursion for complexity. Journal of Symbolic Logic 60(3), 952–969 (1995)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Guillaume Bonfante
    • 1
    • 2
  1. 1.Loria, Calligramme projectVandœuvre-lès-NancyFrance
  2. 2.École Nationale Supérieure des Mines de Nancy, INPLFrance

Personalised recommendations