Skip to main content

Computing the Geodesic Interpolating Spline

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4057))

Abstract

We examine non-rigid image registration by knotpoint mat-break ching. We consider registering two images, each with a set of knotpoints marked, where one of the images is to be registered to the other by a nonlinear warp so that the knotpoints on the template image are exactly aligned with the corresponding knotpoints on the reference image. We explore two approaches for computing the registration by the Geodesic Interpolating Spline. First, we describe a method which exploits the structure of the problem in order to permit efficient optimization and second, we outline an approach using the framework of classical mechanics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marsland, S., Twining, C.: Measuring geodesic distances on the space of bounded diffeomorphisms. In: British Machine Vision Conference (BMVC) (2002)

    Google Scholar 

  2. Modersitzki, J.: Numerical methods for image registration. Oxford University Press, New York (2004)

    MATH  Google Scholar 

  3. Camion, V., Younes, L.: Geodesic interpolating splines. In: EMMCVPR 2002, p. 513 (2002)

    Google Scholar 

  4. Marsland, S., Twining, C.J.: Constructing diffeomorphic representations for the groupwise analysis of nonrigid registrations of medical images. IEEE Trans. Med. Imaging 23, 1006–1020 (2004)

    Article  Google Scholar 

  5. Cheney, W., Light, W.: A course in approximation theory. Brooks/Cole (1999)

    Google Scholar 

  6. Boggio, T.: Sulle funzioni di green d’ordine m. Circolo Matematico di Palermo 20, 97–135 (1905)

    Article  MATH  Google Scholar 

  7. Gould, N.I.M., Orban, D., Toint, P.L.: Galahad, a library of thread-safe fortran 90 packages for large-scale nonlinear optimization. ACM Trans. Math. Softw. 29, 353–372 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Arnold, V.I.: Mathematical methods of classical mechanics, 2nd edn. Graduate Texts in Mathematics, vol. 60, p. 508. Springer, New York (1989)

    Google Scholar 

  9. Numerical Algorithms Group NAG Manual (2004), http://www.nag.co.uk/numeric/FN/manual/

  10. Schaback, R.: Error estimates and condition numbers for radial basis function interpolation. Advances in Computational Mathematics 3, 251–264 (1995)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mills, A., Shardlow, T., Marsland, S. (2006). Computing the Geodesic Interpolating Spline. In: Pluim, J.P.W., Likar, B., Gerritsen, F.A. (eds) Biomedical Image Registration. WBIR 2006. Lecture Notes in Computer Science, vol 4057. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11784012_21

Download citation

  • DOI: https://doi.org/10.1007/11784012_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35648-6

  • Online ISBN: 978-3-540-35649-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics