Characterizations of Regularity

  • Tero Harju
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4002)


Regular languages have many different characterizations in terms of automata, congruences, semigroups etc. We have a look at some more recent results, obtained mostly during the last two decades, namely characterizations using morphic compositions, equality sets and well orderings.


Regular Language Morphic Image Trivial Subgroup Nonempty Word Syntactic Monoid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Myhill, J.: Finite automata and the representation of events. Technical Report WADD TR-57-624, Wright Patterson Air Force Base, Ohio (1957)Google Scholar
  2. 2.
    Nerode, A.: Linear automaton transformations. Proc. Amer. Math. Soc. 9, 541–544 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal 3, 115–125 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inf. Control 8, 190–194 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    McNaughton, R., Papert, S.: Counter-free automata. The M.I.T. Press, Cambridge, Mass.-London (1971); With an appendix by William Henneman, M.I.T. Research Monograph, No. 65Google Scholar
  6. 6.
    Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Logik Grundlagen Math. 6, 66–92 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Elgot, C.C.: Decision problems of finite automata design and related arithmetics. Trans. Amer. Math. Soc. 98, 21–51 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Culik II, K., Fich, F., Salomaa, A.: A homomorphic characterization of regular languages. Discrete Appl. Math. 4, 149–152 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Latteux, M., Leguy, J.: On the composition of morphisms and inverse morphisms. In: Díaz, J. (ed.) ICALP 1983. LNCS, vol. 154, pp. 420–432. Springer, Heidelberg (1983)CrossRefGoogle Scholar
  10. 10.
    Turakainen, P.: A machine-oriented approach to composition of morphisms and inverse morphisms. Bulletin of the EATCS 20, 162–166 (1983)Google Scholar
  11. 11.
    Karhumäki, J., Linna, M.: A note on morphic characterization of languages. Discrete Appl. Math. 5, 243–246 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Latteux, M., Turakainen, P.: A new normal form for the compositions of morphisms and inverse morphisms. Math. Systems Theory 20, 261–271 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Harju, T., Kleijn, H.C.M.: Decidability problems for unary output sequential transducers. Discrete Appl. Math. 32, 131–140 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Choffrut, C., Karhumäki, J.: Test sets for morphisms with bounded delay. Discrete Appl. Math. 12, 93–101 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Halava, V., Harju, T., Latteux, M.: Representation of regular languages by equality sets. Bulletin of the EATCS 86, 224–228 (2005)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Halava, V., Harju, T., Latteux, M.: Equality sets of prefix morphisms and regular star languages. Inf. Process. Lett. 94, 151–154 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Higman, G.: Ordering by divisibility in abstract algebras. Proc. London Math. 3 (1952)Google Scholar
  18. 18.
    Ehrenfeucht, A., Haussler, D., Rozenberg, G.: On regularity of context-free languages. Theoret. Comput. Sci. 27, 311–332 (1983)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Tero Harju
    • 1
  1. 1.Department of MathematicsUniversity of TurkuFinland

Personalised recommendations