Skip to main content

Faster Algorithms for Computing Longest Common Increasing Subsequences

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4009))

Abstract

We present algorithms for finding a longest common increasing subsequence of two or more input sequences. For two sequences of lengths m and n, where mn, we present an algorithm with an output-dependent expected running time of \(O((m+n\ell) \log\log \sigma + {\ensuremath{\mathit{Sort}}})\) and O(m) space, where ℓ is the length of an LCIS, σ is the size of the alphabet, and \({\ensuremath{\mathit{Sort}}}\) is the time to sort each input sequence. For k≥3 length-n sequences we present an algorithm which improves the previous best bound by more than a factor k for many inputs. In both cases, our algorithms are conceptually quite simple but rely on existing sophisticated data structures. Finally, we introduce the problem of longest common weakly-increasing (or non-decreasing) subsequences (LCWIS), for which we present an O(m+nlogn)-time algorithm for the 3-letter alphabet case. For the extensively studied longest common subsequence problem, comparable speedups have not been achieved for small alphabets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldous, D., Diaconis, P.: Longest increasing subsequences: From patience sorting to the Baik-Deift-Johansson theorem. Bull. AMS 36(4), 413–432 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bergroth, L., Hakonen, H., Raita, T.: A survey of longest common subsequence algorithms. In: SPIRE 2000, pp. 39–48. IEEE Computer Society, Los Alamitos (2000)

    Google Scholar 

  3. Bespamyatnikh, S., Segal, M.: Enumerating longest increasing subsequences and patience sorting. Inf. Process. Lett. 76(1-2), 7–11 (2000)

    Article  MathSciNet  Google Scholar 

  4. Chan, W.-T., Zhang, Y., Fung, S.P.Y., Ye, D., Zhu, H.: Efficient Algorithms for Finding a Longest Common Increasing Subsequence. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 665–674. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Fredman, M.L.: On computing the length of longest increasing subsequences. Discrete Mathematics 11(1), 29–35 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geometry problems. In: STOC 1984, pp. 135–143. ACM Press, New York (1984)

    Chapter  Google Scholar 

  7. Hirschberg, D.S.: A linear space algorithm for computing maximal common subsequences. Commun. ACM 18(6), 341–343 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hunt, J.W., Szymanski, T.G.: A fast algorithm for computing longest common subsequences. Commun. ACM 20(5), 350–353 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  9. Masek, W.J., Paterson, M.S.: A faster algorithm computing string edit distances. J. Comput. System Sci. 20, 18–31 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. McCreight, E.M.: Priority search trees. SIAM Journal on Computing 14(2), 257–276 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. van Emde Boas, P., Kaas, R., Zijlstra, E.: Design and implementation of an efficient priority queue. Mathematical Systems Theory 10, 99–127 (1977)

    Article  MATH  Google Scholar 

  12. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J. ACM 21(1), 168–173 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  13. Willard, D.E.: Log-logarithmic worst-case range queries are possible in space Theta(N). Inf. Process. Lett. 17(2), 81–84 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yang, I.-H., Huang, C.-P., Chao, K.-M.: A fast algorithm for computing a longest common increasing subsequence. Inf. Process. Lett. 93/5, 249–253 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brodal, G.S., Kaligosi, K., Katriel, I., Kutz, M. (2006). Faster Algorithms for Computing Longest Common Increasing Subsequences. In: Lewenstein, M., Valiente, G. (eds) Combinatorial Pattern Matching. CPM 2006. Lecture Notes in Computer Science, vol 4009. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11780441_30

Download citation

  • DOI: https://doi.org/10.1007/11780441_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35455-0

  • Online ISBN: 978-3-540-35461-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics