Skip to main content

PAC Learning Axis-Aligned Mixtures of Gaussians with No Separation Assumption

  • Conference paper
Learning Theory (COLT 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4005))

Included in the following conference series:

Abstract

We propose and analyze a new vantage point for the learning of mixtures of Gaussians: namely, the PAC-style model of learning probability distributions introduced by Kearns et al. [13]. Here the task is to construct a hypothesis mixture of Gaussians that is statistically indistinguishable from the actual mixture generating the data; specifically, the KL divergence should be at most ε.

In this scenario, we give a poly(n/ε) time algorithm that learns the class of mixtures of any constant number of axis-aligned Gaussians in R n. Our algorithm makes no assumptions about the separation between the means of the Gaussians, nor does it have any dependence on the minimum mixing weight. This is in contrast to learning results known in the “clustering” model, where such assumptions are unavoidable.

Our algorithm relies on the method of moments, and a subalgorithm developed in [9] for a discrete mixture-learning problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achlioptas, D., McSherry, F.: On spectral learning of mixtures of distributions. In: Auer, P., Meir, R. (eds.) COLT 2005. LNCS (LNAI), vol. 3559, pp. 458–469. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Arora, S., Kannan, R.: Learning mixtures of arbitrary Gaussians. In: Proceedings of the 33rd Symposium on Theory of Computing, pp. 247–257 (2001)

    Google Scholar 

  3. Cover, T., Thomas, J.: Elements of Information Theory. Wiley, Chichester (1991)

    Book  MATH  Google Scholar 

  4. Cryan, M., Goldberg, L., Goldberg, P.: Evolutionary trees can be learned in polynomial time in the two state general Markov model. SIAM Journal on Computing 31(2), 375–397 (2002)

    Article  MathSciNet  Google Scholar 

  5. Dasgupta, S.: Learning mixtures of gaussians. In: Proceedings of the 40th Annual Symposium on Foundations of Computer Science, pp. 634–644 (1999)

    Google Scholar 

  6. Dasgupta, S., Schulman, L.: A Two-round Variant of EM for Gaussian Mixtures. In: Proceedings of the 16th Conf. on UAI, pp. 143–151 (2000)

    Google Scholar 

  7. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Royal Stat. Soc. Ser. B 39, 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  8. Feldman, J., O’Donnell, R., Servedio, R.: PAC learning mixtures of Gaussians with no separation assumption. available at: http://research.microsoft.com/~odonnell

  9. Feldman, J., O’Donnell, R., Servedio, R.: Learning mixtures of product distributions over discrete domains. In: Proc. 46th IEEE FOCS, pp. 501–510 (2005)

    Google Scholar 

  10. Freund, Y., Kearns, M., Ron, D., Rubinfeld, R., Schapire, R., Sellie, L.: Efficient learning of typical finite automata from random walks. Information and Computation 138(1), 23–48 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Freund, Y., Mansour, Y.: Estimating a mixture of two product distributions. In: Proceedings of the 12th Annual COLT, pp. 183–192 (1999)

    Google Scholar 

  12. Kannan, R., Salmasian, H., Vempala, S.S.: The spectral method for general mixture models. In: Auer, P., Meir, R. (eds.) COLT 2005. LNCS, vol. 3559, pp. 444–457. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Kearns, M., Mansour, Y., Ron, D., Rubinfeld, R., Schapire, R., Sellie, L.: On the learnability of discrete distributions. In: Proc. 26th STOC, pp. 273–282 (1994)

    Google Scholar 

  14. Lindsay, B.: Mixture models: theory, geometry and applications. Institute for Mathematical Statistics (1995)

    Google Scholar 

  15. Naor, M.: Evaluation be easier than generation. In: Proceedings of the 28th Symposium on Theory of Computing (STOC), pp. 74–83 (1996)

    Google Scholar 

  16. Titterington, D.M., Smith, A.F.M., Makov, U.E.: Statistical analysis of finite mixture distributions. Wiley & Sons, Chichester (1985)

    MATH  Google Scholar 

  17. Valiant, L.: A theory of the learnable. Communications of the ACM 27(11), 1134–1142 (1984)

    Article  MATH  Google Scholar 

  18. Vempala, S., Wang, G.: A spectral algorithm for learning mixtures of distributions. In: Proceedings of the 43rd IEEE FOCS, pp. 113–122 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Feldman, J., Servedio, R.A., O’Donnell, R. (2006). PAC Learning Axis-Aligned Mixtures of Gaussians with No Separation Assumption. In: Lugosi, G., Simon, H.U. (eds) Learning Theory. COLT 2006. Lecture Notes in Computer Science(), vol 4005. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11776420_5

Download citation

  • DOI: https://doi.org/10.1007/11776420_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35294-5

  • Online ISBN: 978-3-540-35296-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics