Skip to main content

Online Variance Minimization

  • Conference paper
Learning Theory (COLT 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4005))

Included in the following conference series:

Abstract

We design algorithms for two online variance minimization problems. Specifically, in every trial t our algorithms get a covariance matrix \({\mathcal{C}}_t\) and try to select a parameter vector w t such that the total variance over a sequence of trials \(\sum_t {\boldsymbol{w}}_t^{\top}{\mathcal{C}}_t{\boldsymbol{w}}_t\) is not much larger than the total variance of the best parameter vector u chosen in hindsight. Two parameter spaces are considered – the probability simplex and the unit sphere. The first space is associated with the problem of minimizing risk in stock portfolios and the second space leads to an online calculation of the eigenvector with minimum eigenvalue. For the first parameter space we apply the Exponentiated Gradient algorithm which is motivated with a relative entropy. In the second case the algorithm maintains a mixture of unit vectors which is represented as a density matrix. The motivating divergence for density matrices is the quantum version of the relative entropy and the resulting algorithm is a special case of the Matrix Exponentiated Gradient algorithm. In each case we prove bounds on the additional total variance incurred by the online algorithm over the best offline parameter.

Supported by NSF grant CCR 9821087. Some of this work was done while visiting National ICT Australia in Canberra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  2. Bousquet, O., Warmuth, M.K.: Tracking a small set of experts by mixing past posteriors. J. of Machine Learning Research 3, 363–396 (2002)

    Article  MathSciNet  Google Scholar 

  3. Cesa-Bianchi, N., Mansour, Y., Stoltz, G.: Improved second-order bounds for prediction with expert advice. In: Auer, P., Meir, R. (eds.) COLT 2005. LNCS, vol. 3559, pp. 217–232. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Cover, T.M.: Universal portfolios. Mathematical Finance 1(1), 1–29 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55(1), 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cristianini, N., Shawe-Taylor, J., Kandola, J.: Spectral kernel methods for clustering. In: Advances in Neural Information Processing Systems 14, pp. 649–655. MIT Press, Cambridge (2001)

    Google Scholar 

  7. Helmbold, D., Schapire, R.E., Singer, Y., Warmuth, M.K.: On-line portfolio selection using multiplicative updates. Mathematical Finance 8(4), 325–347 (1998)

    Article  MATH  Google Scholar 

  8. Herbster, M., Warmuth, M.K.: Tracking the best expert. Journal of Machine Learning 32(2), 151–178 (1998)

    Article  MATH  Google Scholar 

  9. Kivinen, J., Warmuth, M.K.: Additive versus exponentiated gradient updates for linear prediction. Information and Computation 132(1), 1–64 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Littlestone, N., Warmuth, M.K.: The weighted majority algorithm. Information and Computation 108(2), 212–261 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  12. Tsuda, K., Rätsch, G., Warmuth, M.K.: Matrix exponentiated gradient updates for on-line learning and Bregman projections. Journal of Machine Learning Research 6, 995–1018 (2005)

    Google Scholar 

  13. Warmuth, M.K.: Bayes rule for density matrices. In: Advances in Neural Information Processing Systems 18 (NIPS 2005), December 2005, MIT Press, Cambridge (2005)

    Google Scholar 

  14. Warmuth, M.K., Kuzmin, D.: A Bayesian probability calculus for density matrices (March 2006) (unpublished manuscript)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Warmuth, M.K., Kuzmin, D. (2006). Online Variance Minimization. In: Lugosi, G., Simon, H.U. (eds) Learning Theory. COLT 2006. Lecture Notes in Computer Science(), vol 4005. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11776420_38

Download citation

  • DOI: https://doi.org/10.1007/11776420_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35294-5

  • Online ISBN: 978-3-540-35296-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics