Skip to main content

On Learning and Logic

  • Conference paper
Learning Theory (COLT 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4005))

Included in the following conference series:

  • 2721 Accesses

Abstract

A brief survey is given of learning theory in a logic framework, concluding with some topics for further research. The idea of learning using logic is traced back to Turing’s 1951 radio address [15]. An early seminal result is that clauses have a least general generalization [18]. Another important concept is inverse resolution [16]. As the most common formalism is logic programs, the area is often referred to as inductive logic programming, with yearly ILP conferences since 1991.

This material is based upon work supported by the National Science Foundation under Grant No. CCF-0431059.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: partial meet functions for contraction and revision. J. Symbolic Logic 50, 510–530 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arias, M., Khardon, R., Maloberti, J.: Learning Horn expressions with LogAn-H, Tufts University Computer Science Technical Report 2005-4

    Google Scholar 

  3. Cohen, W.W., Page, C.D.: Polynomial learnability and inductive logic programming: methods and results. New Generation Computing 13, 369–409 (1995)

    Article  Google Scholar 

  4. Frazier, M., Pitt, L.: CLASSIC learning. Machine Learning 25, 151–193 (1996)

    Article  MATH  Google Scholar 

  5. Getoor, L., Friedman, N., Koller, D., Pfeffer, A.: Learning probabilistic relational models. In: Džeroski, S., Lavrač, N. (eds.) Relational Data Mining, pp. 307–335. Kluwer, Dordrecht (2001)

    Google Scholar 

  6. Goldsmith, J., Sloan, R.H., Szörényi, B., Turán, G.: Theory revision with queries: Horn, read-once and parity formulas. Artificial Intelligence 156, 139–176 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Grohe, M., Turán, G.: Learnability and definability in trees and similar structures. Theory of Computing Systems 37, 193–220 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hegedűs, T.: Generalized teaching dimensions and the query complexity of learning. In: 8th Annual Conference on Computational Learning Theory, pp. 108–117 (1995)

    Google Scholar 

  9. Hellerstein, L., Pillaipakkamnatt, K., Raghavan, V., Wilkins, D.: How many queries are needed? J. of the ACM 43, 840–862 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Horváth, T., Turán, G.: Learning logic programs with structured background knowledge. Artificial Intelligence 128, 31–97 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kelly, K.T., Schulte, O., Hendricks, V.: Reliable belief revision. In: Dalla Chiara, M.L., et al. (eds.) Logic and Scientific Methods. Kluwer, Dordrecht (1997)

    Google Scholar 

  12. Khardon, R.: Learning function-free Horn expressions. Machine Learning 37, 241–275 (1999)

    Article  MATH  Google Scholar 

  13. Khardon, R., Roth, D.: Learning to reason. J. of the ACM 44, 697–725 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Martin, E., Osherson, D.: Scientific discovery based on belief revision. J. of Symbolic Logic 62, 1352–1370 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Muggleton, S.: Logic and learning: Turing’s legacy. In: Furukawa, K., Michie, D., Muggleton, S. (eds.) Machine Intelligence, vol. 13, pp. 37–56 (1994)

    Google Scholar 

  16. Muggleton, S., Buntine, W.: Machine invention of first-order predicates by inverting resolution. In: 5. International Machine Learning Conference, pp. 339–352 (1988)

    Google Scholar 

  17. Pagnucco, M., Rajaratnam, D.: Inverse resolution as belief change. In: 19. International Joint Conference on Artificial Intelligence, pp. 540–545 (2005)

    Google Scholar 

  18. Plotkin, G.D.: A note on inductive generalization. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 5, pp. 153–163 (1970)

    Google Scholar 

  19. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62, 107–136 (2006)

    Article  Google Scholar 

  20. Wrobel, S.: Concept Formation and Knowledge Revision. Kluwer, Dordrecht (1994)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Turán, G. (2006). On Learning and Logic. In: Lugosi, G., Simon, H.U. (eds) Learning Theory. COLT 2006. Lecture Notes in Computer Science(), vol 4005. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11776420_2

Download citation

  • DOI: https://doi.org/10.1007/11776420_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35294-5

  • Online ISBN: 978-3-540-35296-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics