Skip to main content

Neural Network Architecture for Modeling the Joint Visual Perception of Orientation, Motion, and Depth

  • Conference paper
Perception and Interactive Technologies (PIT 2006)

Abstract

We present a methodology and a neural network architecture for the modeling of low- and mid-level visual processing. The network architecture uses local filter operators as basic processing units which can be combined into a network via flexible connections. Using this methodology we design a neuronal network that models the joint processing of oriented contrast changes, their motion and depth. The network reflects the structure and the functionality of visual pathways. We present network responses to a stereo video sequence, highlight the correspondence to biological counterparts, outline the limitations of the methodology, and discuss specific aspects of the processing and the extent of visual tasks that can be successfully carried out by the suggested neuronal architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adelson, E.H., Bergen, J.R.: Spatiotemporal energy models for the perception of motion. J. Opt. Soc. 2, 284 (1985)

    Article  Google Scholar 

  2. Anzai, A., Ohzawa, I., Freeman, R.D.: Joint-encoding of motion and depth by visual cortical neurons: neural basis of the pulfrich effect. Nature Neurosci. 4(5), 513–518 (2001)

    Google Scholar 

  3. Cao, Y., Grossberg, S.: A laminar cortical model of stereopsis and 3d surface perception: Closure and da vinci stereopsis. CAS/CNS Technical Report (2004)

    Google Scholar 

  4. Kolesnik, M., Barlit, A.: Iterative orientation tuning in v1: a simple cell circuit with cross-orientation suppression. LNCS (2003)

    Google Scholar 

  5. Koulakov, A.A., Chklovskii, D.B.: Orientation preference patterns in mammalian visual cortex: A wire length minimization approach. Neuron 29, 519–527 (2001)

    Article  Google Scholar 

  6. Neumann, H., Mingolla, E.: Contour and Surface Perception. In: Handbook of brain theory and neural networks. MIT Press, Cambridge (2002)

    Google Scholar 

  7. Neumann, H., Pessoa, L., Hanse, T.: Interaction of on and off pathways for visual contrast measurement. Biol. Cybern. 81, 515–523 (1999)

    Article  Google Scholar 

  8. Ohzawa, I., DeAngelis, G.C., Freeman, R.D.: Encoding of binocular disparity by simple cells in the cat’s visual cortex. J. Neurophys. 75(5), 1779–1805 (1996)

    Google Scholar 

  9. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(7), 629–639 (1990)

    Article  Google Scholar 

  10. Sabatini, S.P., Solari, F.: Emergence of motion-in-depth selectivity in the visual cortex through linear combination of binocular energy complex cells with different ocular dominance. Neurocomp. 58-60, 865 (2004)

    Article  Google Scholar 

  11. Sabatini, S.P., Solari, F., Cavalleri, P., Bisio, G.: Phase-based binocular perception of motion in depth: Cortical-like operators and analog vlsi architectures. J. Appl. Sig. Proc. (2003)

    Google Scholar 

  12. Schwartz, E.L.: Spatial mapping in the primate sensory projection: analytic structure and relevance to perception. Biological Cybernetics 25(4), 181–194 (1977)

    Article  Google Scholar 

  13. Shmuel, A., Grinvald, A.: Functional organization for direction of motion and its relationship to orientation maps in cat area 18. J. Neurosci. 16(21), 6945 (1996)

    Google Scholar 

  14. Swindale, N.V.: Cortical organization: Modules, polymaps and mosaics. Curr. Biol. 8 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Oberhoff, D., Stynen, A., Kolesnik, M. (2006). Neural Network Architecture for Modeling the Joint Visual Perception of Orientation, Motion, and Depth. In: André, E., Dybkjær, L., Minker, W., Neumann, H., Weber, M. (eds) Perception and Interactive Technologies. PIT 2006. Lecture Notes in Computer Science(), vol 4021. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11768029_4

Download citation

  • DOI: https://doi.org/10.1007/11768029_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34743-9

  • Online ISBN: 978-3-540-34744-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics