Advertisement

A Scalable Solution for Adaptive Problem Sequencing and Its Evaluation

  • Amruth Kumar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4018)

Abstract

We propose an associative mechanism for adaptive generation of problems in intelligent tutors. Our evaluations of the tutors that use associative adaptation for problem sequencing show that 1) associative adaptation targets concepts less well understood by students; and 2) associative adaptation helps students learn with fewer practice problems. Apart from being domain-independent, the advantages of associative adaptation compared to other adaptive techniques are that it is easier to build and is scalable.

Keywords

Programming tutor Adaptive Problem Sequencing Evaluation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aimeur, E., Brassard, G., Dufort, H., Gambs, S.: CLARISSE: A Machine Learning Tool to Initialize Student Models. In: Cerri, S., Gouarderes, G., Paraguacu, F. (eds.) Proc. of ITS 2002, pp. 718–728. Springer, Heidelberg (2002)Google Scholar
  2. 2.
    Arroyo, I., Conejo, R., Guzman, E., Woolf, B.P.: An Adaptive Web-Based Component for Cognitive Ability Estimation. In: Proc. of AIED 2001, pp. 456–466. IOS Press, Amsterdam (2001)Google Scholar
  3. 3.
    Bloom, B.S., Krathwohl, D.R.: Taxonomy of Educational Objectives: The Classification of Educational Goals. In: Handbook I: Cognitive Domain, New York, Longmans, Green (1956)Google Scholar
  4. 4.
    Bloom, B.S.: The 2 Sigma Problem: The Search for Methods of Group Instruction as Effective as One-to-One Tutoring. Educational Researcher 13, 3–16 (1984)Google Scholar
  5. 5.
    Brown, J.S., Burton, R.R.: Diagnostic models for procedural bugs in basic mathematical skills. Cognitive Science 2, 155–191 (1978)CrossRefGoogle Scholar
  6. 6.
    Czarkowski, M., Kay, J.: Challenges of Scrutable Adaptivity. In: Hoppe, U., Verdejo, F., Kay, J. (eds.) Proc. of AIED 2003, pp. 404–406. IOS Press, Amsterdam (2003)Google Scholar
  7. 7.
    Dancik, G., Kumar, A.N.: A Tutor for Counter-Controlled Loop Concepts and Its Evaluation. In: Proceedings of Frontiers in Education Conference (FIE 2003), Boulder, CO, 11/5-8/2003, Session T3C (2003)Google Scholar
  8. 8.
    Kay, J.: Stereotypes, Student Models and Scrutability. In: Gauthier, G., VanLehn, K., Frasson, C. (eds.) ITS 2000. LNCS, vol. 1839, pp. 19–30. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Kalyuga, S.: Rapid Assessment of Learner’s Knowledge in Adaptive Learning Environments. In: Proc. of AIED 2003, pp. 167–174. IOS Press, Amsterdam (2003)Google Scholar
  10. 10.
    Kurhila, J., Lattu, M., Pietilä, A.: Using Vector-Space Model in Adaptive Hypermedia for Learning. In: Cerri, S.A., Gouardéres, G., Paraguaçu, F. (eds.) ITS 2002. LNCS, vol. 2363, pp. 129–138. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Kumar, A.N.: Using Enhanced Concept Map for Student Modeling in a Model-Based Programming Tutor. In: International FLAIRS conference on Artificial Intelligence, Melbourne Beach, FL, May 11-13 (2006)Google Scholar
  12. 12.
    Kumar, A.N.: Explanation of step-by-step execution as feedback for problems on program analysis, and its generation in model-based problem-solving tutors, Technology, Instruction, Cognition and Learning (TICL) Journal (to appear)Google Scholar
  13. 13.
    Martin, B., Mitrovic, A.: Tailoring Feedback by Correcting Student Answers. In: Gauthier, G., VanLehn, K., Frasson, C. (eds.) ITS 2000. LNCS, vol. 1839, pp. 383–392. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    Melis, E., Andres, E., Budenbender, J., Frischauf, A., Goguadze, G., Libbrecht, P., Pollet, M., Ullrich, C.: ActiveMath: A Generic and Adaptive Web-Based Learning Environment. International Journal of Artificial Intelligence in Education 12, 385–407 (2001)Google Scholar
  15. 15.
    Pérez-de-la-Cruz, J.-L., Millán, E., Suarez, E.: Adaptive Bayesian Networks for Multilevel Student Modelling. In: Gauthier, G., VanLehn, K., Frasson, C. (eds.) ITS 2000. LNCS, vol. 1839, pp. 534–543. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Reiser, B., Anderson, J., Farrell, R.: Dynamic student modelling in an intelligent tutor for LISP programming. In: Proc. of IJCAI 1985, Los Altos (1985)Google Scholar
  17. 17.
    Salton, G., Wong, A., Yang, C.S.: A Vector Space Model for Automatic Indexing. Communications of the ACM 18(11), 613–620 (1975)zbMATHCrossRefGoogle Scholar
  18. 18.
    Weber, G., Brusilovsky, P.: ELM-ART: An Adaptive Versatile System for Web-Based Instruction. International Journal of Artificial Intelligence in Education 12, 351–384 (2001)Google Scholar
  19. 19.
    Wainer, H.: Computerized Adaptive Testing: A Primer. Lawrence Erlbaum Associates, Hillsdale (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Amruth Kumar
    • 1
  1. 1.Ramapo College of New JerseyMahwahUSA

Personalised recommendations