Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3926))

Included in the following conference series:

  • 626 Accesses

Abstract

In the paper, we analyze the vectorization methods and errors of vectorization of monochrome images obtained by scanning line drawings. We focused our attention on widespread errors inherent in many commercial and academic universal vectorization systems. This error, an error of parity, depends on scanning resolution, thickness of line, and the type of vectorization method. The method of removal of parity errors is suggested. The problems of accuracy, required storage capacity, and admissible slowing of vectorization are discussed in the conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blum, H.: A transformation for extracting new descriptors of shape. In: Wathen-Dunn, W. (ed.) Models for the Perception of Speech and Visual Form, pp. 362–380. MIT Press, Cambridge (1967)

    Google Scholar 

  2. Bodansky, E.: System approach to a raster-to-vector conversion: From research to conversion system. In: Levachkin, S., Bodansky, E., Ruas, A. (eds.) e-Proceedings of International Workshop on Semantic Processing of Spatial Data (GEOPRO 2002), Mexico City, Mexico, December 3-4 (2002) (CD ISBN: 970-18-8521-X)

    Google Scholar 

  3. Deseilligny, M.P., Stamon, G., Suen, C.Y.: A New Shape Description for Flexible Skeletonization. IEEE Transaction on Pattern Analysis and Machine Intelligence 205, 505–521 (1998)

    Article  Google Scholar 

  4. Suen, C.Y., Wang, P.S.P. (eds.): Thinning methodologies for pattern recognition. Series in Machine Perception Artificial Intelligence, vol. 8 (1994)

    Google Scholar 

  5. Rosenfeld, A., Pfaltz, J.L.: Sequential operations in digital picture processing. Journal of the Association for Computing Machinery 13(4), 471–494 (1966)

    Article  MATH  Google Scholar 

  6. Novikov, Y.L.: An effective algorithms of raster images vectorization and their implementation in GIS (Effektivniie algoritmi vektorizazii rastrovih izobrazhenii i ih realizaziia v geoinformazionnoi systeme) (in Russian), Ph.D dissertation, Tomsk State University, Tomsk (2002)

    Google Scholar 

  7. Gribov, A., Bodansky, E.: Vectorization with the Voronoi L-diagram. In: Proceedings of the Seventh International Conference on Document Analysis and Recognition (ICDAR), vol. 2, pp. 1015–1019 (2003)

    Google Scholar 

  8. Elliman, D.: A really useful vectorization algorithm. In: Chhabra, A.K., Dori, D. (eds.) GREC 1999. LNCS, vol. 1941, pp. 19–27. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  9. Ogniewicz, R., Kubler, O.: Hierarchic Voronoi Skeletons. Pattern Recognition 28(3), 343–359 (1995)

    Article  Google Scholar 

  10. Dori, D.: Orthogonal Zig-Zag: An algorithm for vectorizing engineering drawings compared with Hough Transform. Advances in Engineering Software 28(1), 11–24 (1997)

    Article  Google Scholar 

  11. Liu, W., Dori, D.: Sparse Pixel Vectorization: An Algorithm and Its Performance Evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence 21, 202–215 (1999)

    Article  Google Scholar 

  12. Douglas, D., Peucker, T.: Algorithm for the reduction of the number of points required to represent a digitized line or its caricature. The Canadian Cartographer 10(2), 112–122 (1973)

    Article  Google Scholar 

  13. Bodansky, E., Gribov, A., Pilouk, M.: Smoothing and Compression of Lines Obtained by Raster-to-Vector Conversion. In: Blostein, D., Kwon, Y.-B. (eds.) GREC 2001. LNCS, vol. 2390, pp. 256–265. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Gribov, A., Bodansky, E.: A New Method of Polyline Approximation. In: Fred, A., Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds.) SSPR&SPR 2004. LNCS, vol. 3138, pp. 504–511. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Gribov, A., Bodansky, E.: Reconstruction of orthogonal polygonal lines. In: Bunke, H., Spitz, A.L. (eds.) DAS 2006. LNCS, vol. 3872, pp. 462–473. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Gribov, A., Bodansky, E.: How to Increase the Efficiency of Raster-to-Vector Conversion. In: Proceedings of the Fifth IAPR International Workshop on Graphics Recognition (GREC), Spain, pp. 225–232 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gribov, A., Bodansky, E. (2006). Vectorization and Parity Errors. In: Liu, W., Lladós, J. (eds) Graphics Recognition. Ten Years Review and Future Perspectives. GREC 2005. Lecture Notes in Computer Science, vol 3926. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11767978_1

Download citation

  • DOI: https://doi.org/10.1007/11767978_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34711-8

  • Online ISBN: 978-3-540-34712-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics