Skip to main content

Introduction to Radiative Transfer

  • Chapter
  • First Online:
Microscale and Nanoscale Heat Transfer

Part of the book series: Topics in Applied Physics ((TAP,volume 107))

  • 1629 Accesses

Abstract

The aim of this Chapter is to introduce concepts and methods for modelling radiative transfer on short length scales. Electromagnetic radiation propagating in an arbitrary medium is characterised by various length scales: wavelength, coherence length, mean free path (of scattering, transport, or absorption), and skin depth. In order to cover several areas of interest for micro and nanoheat transfer, the discussion is divided into two parts.

In the first part (Sects. 1–3), we consider the propagation of radiation in scattering and absorbing media. The basic tool is the equation of radiative transfer. We shall consider in particular the case of systems with characteristic sizes of the order of the mean free path l (or in which the evolution time is of the order of l/c, where c is the energy propagation speed), but which remain large compared with the wavelength and the coherence length. We describe the various transport regimes (ballistic, multiple scattering and diffusive) and stress the analogy between this situation and the problem of heat conduction.

In the second part (Sect. 4), we treat the case of systems with characteristic sizes less than the wavelength and the coherence length. An electromagnetic formalism is then essential for modelling radiative transfer. We introduce a general calculational method based on the fluctuation–dissipation theorem. This method will be used in the Chapter by Joulain in this volume, which is devoted to the study of radiative transfer in nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • S. Chandrasekhar: Radiative Transfer (Dover, New York 1960)

    MATH  Google Scholar 

  • K. M. Case, P. F. Zweifel: Linear Transport Theory (Addison-Wesley, Reading, Massachusetts 1967)

    MATH  Google Scholar 

  • L. A. Apresyan, Y. A. Kravtsov: Radiation Transfer: Statistical and Wave Aspects (Gordon and Breach, Amsterdam 1996)

    MATH  Google Scholar 

  • A. Ishimaru: Wave Propagation and Scattering in Random Media (IEEE Press, Piscataway 1997)

    MATH  Google Scholar 

  • G. E. Thomas, K. Stamnes: Radiative Transfer in the Atmosphere and Ocean (Cambridge University Press, Cambridge 1999) Chap. 8

    Book  Google Scholar 

  • A. Mandelis: Diffusion of waves and their uses, Phys. Tod. 53, 29–34 (2000)

    Article  Google Scholar 

  • A. Majumdar: Microscale heat conduction in dielectric thin films, J. Heat Transfer 115, 7–16 (1993)

    Article  Google Scholar 

  • G. Chen: Size and interface effects on thermal conductivity of superlattices and periodic thin-film structures, J. Heat Transfer 119, 220–229 (1997)

    Article  Google Scholar 

  • R. Aronson, N. Corngold: Photon diffusion coefficient in an absorbing medium, J. Opt. Soc. Am. A 16, 1066–1071 (1999)

    Article  ADS  Google Scholar 

  • R. Graaf, J. J. Ten Bosch: Diffusion coefficient in photon diffusion theory, Opt. Lett. 25, 43–45 (2000)

    Article  ADS  Google Scholar 

  • R. Pierrat, J.-J. Greffet, R. Carminati: Photon diffusion coefficient in scattering and absorbing media, J. Opt. Soc. Am. A 23, 1106–1110 (2006)

    Article  ADS  Google Scholar 

  • R. H. J. Kop, P. de Vries, R. Sprik, A. Lagendijk: Observation of anomalous transport of strongly multiple scattered light in thin disordered slabs, Phys. Rev. Lett. 79, 4369–4372 (1997)

    Article  ADS  Google Scholar 

  • R. Elaloufi, R. Carminati, J.-J. Greffet: Time-dependent transport through scattering media: From radiative transfer to diffusion, J. Opt. A: Pure Appl. Opt. 4, S103–S108 (2002)

    Article  ADS  Google Scholar 

  • R. Elaloufi: Propagation du rayonnement en milieu diffusant. Etude de la transition en r'egime balistique et r'egime diffusif et des fluctuations temporelles d'intensit'e, Ph.D. thesis, Ecole Centrale Paris (2003)

    Google Scholar 

  • R. Aronson: Boundary conditions for diffusion of light, J. Opt. Soc. Am. A 12, 2532–2539 (1995)

    Article  ADS  Google Scholar 

  • A. D. Kim, A. Ishimaru: Optical diffusion of continuous wave, pulsed and density waves in scattering media and comparisons with radiative transfer, Appl. Opt. 37, 5313–5319 (1998)

    Article  ADS  Google Scholar 

  • Z. Q. Zhang, I. P. Jones, H. P. Schriemer, J. H. Page, D. A. Waitz, P. Sheng: Wave transport in random media: The ballistic to diffusive transition, Phys. Rev. E 60, 4843–4850 (1999)

    Article  ADS  Google Scholar 

  • K. Mitra, S. Kumar: Development and comparison of models for light-pulse transport through scattering–absorbing media, Appl. Opt. 38, 188–196 (1999)

    Article  ADS  Google Scholar 

  • X. Zhang, Z. Q. Zhang: Wave transport through thin slabs of random media with internal reflection: Ballistic to diffusive transition, Phys. Rev. E 66, 016612 (2002)

    Article  ADS  Google Scholar 

  • R. Elaloufi, R. Carminati, J.-J. Greffet: Diffusive-to-ballistic transition in dynamic light transmission through thin scattering slabs: A radiative transfer approach, J. Opt. Soc. Am. A 21, 1430–1437 (2004)

    Article  ADS  Google Scholar 

  • J. X. Zhu, D. J. Pine, D. A. Weitz: Internal reflection of diffusive light in random media, Phys. Rev. A 44, 3948–3959 (1991)

    Article  ADS  Google Scholar 

  • K. E. Goodson, M. I. Flik, L. T. Su, D. A. Antoniadis: Prediction and measurement of the thermal conductivity of amorphous dielectric layers, J. Heat Transfer 116, 317–324 (1994)

    Article  Google Scholar 

  • S. M. Rytov, Y. A. Kravtsov, V. I. Tatarskii: Principles of Statistical Radiophysics, vol. 3 (Springer, Berlin 1989) Chap. 3

    MATH  Google Scholar 

  • R. Carminati, J.-J. Greffet: Near-field effects in spatial coherence of thermal sources, Phys. Rev. Lett. 82, 1660 (1999)

    Article  ADS  Google Scholar 

  • J. P. Mulet, K. Joulain, R. Carminati, J.-J. Greffet: Enhanced radiative heat transfer at nanometric distances, Microscale Thermophysical Eng. 6, 209–222 (2002)

    Article  Google Scholar 

  • K. Joulain, J. P. Mulet, F. Marquier, R. Carminati, J. J. Greffet: Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field, Surf. Sci. Rep. 57, 59–112 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Sebastian Volz

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Carminati, R. Introduction to Radiative Transfer. In: Volz, S. (eds) Microscale and Nanoscale Heat Transfer. Topics in Applied Physics, vol 107. Springer, Berlin, Heidelberg . https://doi.org/10.1007/11767862_4

Download citation

  • DOI: https://doi.org/10.1007/11767862_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36056-8

  • Online ISBN: 978-3-540-36057-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics