Skip to main content

Trace Equivalence Characterization Through Reinforcement Learning

  • Conference paper
Advances in Artificial Intelligence (Canadian AI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4013))

Abstract

In the context of probabilistic verification, we provide a new notion of trace-equivalence divergence between pairs of Labelled Markov processes. This divergence corresponds to the optimal value of a particular derived Markov Decision Process. It can therefore be estimated by Reinforcement Learning methods. Moreover, we provide some PAC-guarantees on this estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellman, R.E.: Dynamic Programming. Dover Publications, Incorporated (2003)

    MATH  Google Scholar 

  2. Blute, R., Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for labelled Markov processes. In: Proc. of the Twelfth IEEE Symposium On Logic In Computer Science, Warsaw, Poland (1997)

    Google Scholar 

  3. Censor, Y.: Parallel Optimization: Theory, Algorithms, Applications. Oxford University Press, Oxford (1997)

    Google Scholar 

  4. Cover, T.M., Thomas, J.A.: Elements of Information Theory, ch. 12. Wiley, Chichester (1991)

    Book  Google Scholar 

  5. Even-Dar, E., Mansour, Y.: Learning rates for Q-learning. In: Helmbold, D.P., Williamson, B. (eds.) COLT 2001 and EuroCOLT 2001. LNCS (LNAI), vol. 2111, pp. 589–604. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Fiechter, C.N.: Design and Analysis of Efficient Reinforcement Learning Algorithms. PhD thesis, Univ.of Pittsburgh (1997)

    Google Scholar 

  7. Hoeffding, W.: Probability inequalities for sums of bounded random variables. American Statistical Association Journal 58, 13–30 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  8. Jaakkola, T., Jordan, M.I., Singh, S.P.: Convergence of stochastic iterative dynamic programming algorithms. In: Cowan, J.D., Tesauro, G., Alspector, J. (eds.) Advances in Neural Information Processing Systems, vol. 6, pp. 703–710. Morgan Kaufmann Publishers, San Francisco (1994)

    Google Scholar 

  9. Jou, C.-C., Smolka, S.A.: Equivalences, congruences, and complete axiomatizations for probabilistic processes. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, Springer, Heidelberg (1990)

    Google Scholar 

  10. Kaelbling, L.P., Littman, M.L., Moore, A.P.: Reinforcement learning: A survey. Journal of Artificial Intelligence Research 4, 237–285 (1996)

    Google Scholar 

  11. Kearns, M., Singh, S.: Finite-sample convergence rates for q-learning and indirect algorithms. In: Proc. of the 1998 conference on Advances in neural information processing systems II, pp. 996–1002. MIT Press, Cambridge (1999)

    Google Scholar 

  12. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94(1), 1–28 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  13. Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning. MIT Press, Cambridge (1998)

    Google Scholar 

  14. Tsitsiklis, J.N.: Asynchronous stochastic approximation and Q-learning. Machine Learning 16(3), 185–202 (1994)

    MATH  MathSciNet  Google Scholar 

  15. Watkins, C.: Learning from Delayed Rewards. PhD thesis, Univ. of Cambridge (1989)

    Google Scholar 

  16. Watkins, C., Dayan, P.: Q-learning. Machine Learning 8, 279–292 (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Desharnais, J., Laviolette, F., Moturu, K.P.D., Zhioua, S. (2006). Trace Equivalence Characterization Through Reinforcement Learning. In: Lamontagne, L., Marchand, M. (eds) Advances in Artificial Intelligence. Canadian AI 2006. Lecture Notes in Computer Science(), vol 4013. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11766247_32

Download citation

  • DOI: https://doi.org/10.1007/11766247_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34628-9

  • Online ISBN: 978-3-540-34630-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics