Skip to main content

Abstract

We show that various duals that occur in optimization and constraint satisfaction can be classified as inference duals, relaxation duals, or both. We discuss linear programming, surrogate, Lagrangean, superadditive, and constraint duals, as well as duals defined by resolution and filtering algorithms. Inference duals give rise to nogood-based search methods and sensitivity analysis, while relaxation duals provide bounds. This analysis shows that duals may be more closely related than they appear, as are surrogate and Lagrangean duals. It also reveals common structure between solution methods, such as Benders decomposition and Davis-Putnam-Loveland methods with clause learning. It provides a framework for devising new duals and solution methods, such as generalizations of mini-bucket elimination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barahona, F., Anbil, R.: The volume algorithm: Producing primal solutions with a subgradient algorithm. Mathematical Programming 87, 385–399 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik 4, 238–252 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blair, C.E., Jeroslow, R.G.: The value function of a mixed integer program. Mathematical Programming 23, 237–273 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Mathematics 4, 305–337 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cook, W., Gerards, A.M.H., Schrijver, A., Tardos, E.: Sensitivity results in integer programming. Mathematical Programming 34, 251–264 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dawande, M., Hooker, J.N.: Inference-based sensitivity analysis for mixed integer/linear programming. Operations Research 48, 623–634 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dechter, R.: Mini-buckets: A general scheme of generating approximations in automated reasoning. In: Proceedings of the 15th International Joint Conference on Artificial Intelligence (IJCAI 1997), pp. 1297–1302 (1997)

    Google Scholar 

  8. Dechter, R., Rish, I.: Mini-buckets: A general scheme for bounded inference. Journal of the ACM 50, 107–153 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Geoffrion, A.M.: Generalized benders decomposition. Journal of Optimization Theory and Applications 10, 237–260 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  10. Glover, F.: Surrogate constraint duality in mathematical programming. Operations Research 23, 434–451 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hooker, J.N.: Inference duality as a basis for sensitivity analysis. Constraints 4, 104–112 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hooker, J.N.: Logic-Based Methods for Optimization: Combining Optimization and Constraint Satisfaction. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  13. Hooker, J.N.: A hybrid method for planning and scheduling. Constraints 10, 385–401 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hooker, J.N., Ottosson, G.: Logic-based Benders decomposition. Mathematical Programming 96, 33–60 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jain, V., Grossmann, I.E.: Algorithms for hybrid MILP/CP models for a class of optimization problems. INFORMS Journal on Computing 13, 258–276 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jeroslow, R.G.: Cutting plane theory: Algebraic methods. Discrete Mathematics 23, 121–150 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  17. Johnson, E.L.: Cyclic groups, cutting planes and shortest paths. In: Hu, T.C., Robinson, S. (eds.) Mathematical Programming, pp. 185–211. Academic Press, London (1973)

    Chapter  Google Scholar 

  18. Moskewicz, M., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: Proceedings of the 38th Design Automation Conference (DAC 2001), pp. 530–535 (2001)

    Google Scholar 

  19. Nedic, A., Bertsekas, D.P.: Incremental subgradient methods for nondifferentiable optimization. SIAM Journal on Optimization 12, 109–138 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wolsey, L.A.: The b-hull of an integer program. Discrete Applied Mathematics 3, 193–201 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hooker, J.N. (2006). Duality in Optimization and Constraint Satisfaction. In: Beck, J.C., Smith, B.M. (eds) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. CPAIOR 2006. Lecture Notes in Computer Science, vol 3990. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11757375_3

Download citation

  • DOI: https://doi.org/10.1007/11757375_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34306-6

  • Online ISBN: 978-3-540-34307-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics