Skip to main content

Specificity of Hybridization Between DNA Sequences Based on Free Energy

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3892))

Abstract

We investigated the specificity of hybridization based on a minimum free energy (ΔG min ) through gel electrophoresis analysis. The analysis, using 94 pairs of sequences with length 20, showed that sequences that hybridize each other can be separated using the constraint ΔG min ≤–14.0, but cannot be separated using the number of base pairs (BP) in the range from 9 to 18. This demonstrates that the ΔG min is superior to the BP in terms of the capability to separate specific from non-specific sequences. Furthermore, the comparison between sequence design based on ΔG min and that based on the BP, done through a computer simulation, showed that the former outperformed the latter in terms of the number of sequences designed successfully as well as the ratio of successfully designed sequences to the total number of sequences checked.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Faulhammer, D., Cukras, A.R., Lipton, R.J., Landweber, L.F.: Molecular computation: RNA solutions to chess problems. Proc. Natl. Acad. Sci. U S A 97(4), 1385–1389 (2000)

    Article  Google Scholar 

  2. Braich, R.S., Chelyapov, N., Johnson, C., Rothemund, P.K., Adleman, L.: Solution of a 20-variable 3-SAT problem on a DNA computer. Science 296(5567), 499–502 (2002)

    Article  Google Scholar 

  3. Yan, H., Zhang, X., Shen, Z., Seeman, N.C.: A robust DNA mechanical device controlled by hybridization topology. Nature 415(6867), 62–65 (2002)

    Article  Google Scholar 

  4. Shih, W.M., Quispe, J.D., Joyce, G.F.: A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 427(6975), 618–621 (2004)

    Article  Google Scholar 

  5. Arita, M., Kobayashi, S.: DNA sequence design using templates. New Generation Computing 20, 263–277 (2002)

    Article  MATH  Google Scholar 

  6. Tulpan, D., Hoos, H., Condon, A.: Stochastic local search algorithms for DNA word design. In: Hagiya, M., Ohuchi, A. (eds.) DNA 2002. LNCS, vol. 2568, pp. 229–241. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Kashiwamura, S., Kameda, A., Yamamoto, M., Ohuchi, A.: Two-step search for DNA sequence design. In: IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Special Section on Papers Slected from 2003 International Technical Conference on Circuts/Systems, Computer and Communications (ITC-CSCC 2003), vol. E87-A(6), pp. 1446–1453 (2004)

    Google Scholar 

  8. Tanaka, F., Kameda, A., Yamamoto, M., Ohuchi, A.: Design of nucleic acid sequences for DNA computing based on a thermodynamic approach. Nucleic Acids Res. 33(3), 903–911 (2005)

    Article  Google Scholar 

  9. Sen, D., Gilbert, W.: Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature 334(6180), 364–366 (1988)

    Article  Google Scholar 

  10. Garzon, M., Deaton, R., Neather, P., Franceschetti, D.R., Murphy, R.C.: A new metric for DNA computing. In: Poceedings of 2nd Annual Genetic Programming Conference, vol. GP-97, pp. 472–478 (1997)

    Google Scholar 

  11. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9(1), 133–148 (1981)

    Article  Google Scholar 

  12. Gray, D.M., Hung, S.H., Johnson, K.H.: Absorption and circular dichroism spectroscopy of nucleic acid duplexes and triplexes. Methods Enzymol. 246, 19–34 (1995)

    Article  Google Scholar 

  13. Tanaka, F., Kameda, A., Yamamoto, M., Ohuchi, A.: Thermodynamic parameters based on a nearest-neighbor model for DNA sequences with a single-bulge loop. Biochemistry 43(22), 7143–7150 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tanaka, F., Kameda, A., Yamamoto, M., Ohuchi, A. (2006). Specificity of Hybridization Between DNA Sequences Based on Free Energy. In: Carbone, A., Pierce, N.A. (eds) DNA Computing. DNA 2005. Lecture Notes in Computer Science, vol 3892. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11753681_29

Download citation

  • DOI: https://doi.org/10.1007/11753681_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34161-1

  • Online ISBN: 978-3-540-34165-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics