Skip to main content

Designing Nucleotide Sequences for Computation: A Survey of Constraints

  • Conference paper
DNA Computing (DNA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3892))

Included in the following conference series:

Abstract

We survey common biochemical constraints useful for the design of DNA code words for DNA computation. We define the DNA Code Constraint Problem and cover biochemistry topics relevant to DNA libraries. We examine which biochemical constraints are best suited for DNA word design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Faulhammer, D., Cukras, A.R., Lipton, R.J., Landweber, L.F.: Molecular computation: RNA solutions to chess problems. Proceedings of the National Academy of Sciences of the USA (PNAS) 97(4), 1385–1389 (2000); The PERMUTE Program is available at: http://www.pnas.org/cgi/content/full/97/4/1385/DC1

    Article  Google Scholar 

  2. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266(5187), 1021–1024 (1994)

    Article  Google Scholar 

  3. Lipton, R.J.: DNA solution of hard computational problems. Science 268, 542–545 (1995)

    Article  Google Scholar 

  4. Deaton, R.J., Murphy, R.C., Garzon, M., Franceschetti, D.R., Stevens Jr., S.E.: Good encodings for DNA-based solutions to combinatorial problems. In: Landweber, Baum (eds.) [62], pp. 247–258

    Google Scholar 

  5. Brenneman, A., Condon, A.E.: Strand design for bio-molecular computation. Technical report, University of British Columbia (March 2001)

    Google Scholar 

  6. Mauri, G., Ferretti, C.: Word design for molecular computing: A survey. In: Chen, J., Reif, J.H. (eds.) DAN 2003. LNCS, vol. 2943, pp. 37–47. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Dirks, R.M., Lin, M., Winfree, E., Pierce, N.A.: Paradigms for computational nucleic acid design. Nucleic Acids Research 32(4), 1392–1403 (2004)

    Article  Google Scholar 

  8. Stojanovic, M.N., Stefanovic, D.: A deoxyribozyme-based molecular automaton. Nature Biotechnology 21(9), 1069–1074 (2003)

    Article  Google Scholar 

  9. Zuker, M.: Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research 31(13), 3406–3415 (2003), Mfold is available at: http://www.bioinfo.rpi.edu/applications/mfold

    Article  Google Scholar 

  10. SantaLucia Jr., J.: A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proceedings of the National Academy of Sciences of the USA (PNAS) 95, 1460–1465 (1998)

    Article  Google Scholar 

  11. Peyret, N.: Prediction of Nucleic Acid Hybridization: Parameters and Algorithms. PhD thesis, Wayne State University, Dept. of Chemistry (2000)

    Google Scholar 

  12. Seeman, N.C.: De Novo design of sequences for nucleic acid structural engineering. Journal of Biomolecular Structure & Dynamics 8(3), 573–581 (1990)

    Article  Google Scholar 

  13. Feldkamp, U., Rauhe, H., Banzhaf, W.: Software tools for DNA sequence design. Genetic Programming and Evolvable Machines 4(2), 153–171 (2003)

    Article  Google Scholar 

  14. Tanaka, F., Kameda, A., Yamamoto, M., Ohuchi, A.: Specificity of hybridization between DNA sequences based on free energy. In: Carbone, et al. (eds.) [63], pp. 366–375

    Google Scholar 

  15. Sen, D., Gilbert, W.: Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature 334(6180), 364–366 (1988)

    Article  Google Scholar 

  16. Seeman, N.C.: It started with Watson and Crick, but it sure didn’t end there: Pitfalls and possibilities beyond the classic double helix. Natural Computing: An international journal 1(1), 53–84 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mir, K.U.: A restricted genetic alphabet for DNA computing. In: Landweber, Baum (eds.) [62]

    Google Scholar 

  18. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Research 9(1), 133–148 (1981)

    Article  Google Scholar 

  19. Andronescu, M., Dees, D., Slaybaugh, L., Zhao, Y., Condon, A., Cohen, B., Skiena, S.: Algorithms for testing that sets of DNA word designs avoid unwanted secondary structure. In: Hagiy, Ohuchi (eds.) [64], pp.182–195

    Google Scholar 

  20. Kobayashi, S.: Testing structure freeness of regular sets of biomolecular sequences. In: Ferretti, et al. (eds.) [65], pp. 395–404

    Google Scholar 

  21. Kijima, A., Kobayashi, S.: Efficient algorithm for testing structure freeness of finite set of biomolecular sequences. In: Carbone, et al. (eds.) [63], pp. 278–288

    Google Scholar 

  22. McCaskill, J.S.: The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29(6-7), 1105–1119 (1990)

    Article  Google Scholar 

  23. Dirks, R.M., Pierce, N.A.: A partition function algorithm for nucleic acid secondary structure including pseudoknots. Journal of Computational Chemistry 24(13), 1664–1677 (2003), NUPACK is available at: http://www.acm.caltech.edu/~niles/software.html

    Article  Google Scholar 

  24. Marathe, A., Condon, A.E., Corn, R.M.: On combinatorial DNA word design. Journal of Computational Biology 8(3), 201–220 (2001)

    Article  MATH  Google Scholar 

  25. Leupold, P.: Partial words for DNA coding. In: Ferretti, et al. (eds.) [65]

    Google Scholar 

  26. Garzon, M., Neathery, P., Deaton, R.J., Murphy, R.C., Franceschetti, D.R., Stevens Jr., S.E.: A new metric for DNA computing. In: Proceedings 2nd Genetic Programming Conference, pp. 472–478 (1997)

    Google Scholar 

  27. Penchovsky, R., Ackermann, J.: DNA library design for molecular computation. Journal of Computational Biology 10(2), 215–229 (2003)

    Article  Google Scholar 

  28. D’yachkov, A.G., Macula, A.J., Pogozelski, W.K., Renz, T.E., Rykov, V.V., Torney, D.C.: A weighted insertion-deletion stacked pair thermodynamic metric. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 90–103. Springer, Heidelberg (2005); SynDCode is available at: http://cluster.ds.geneseo.edu:8080/ParallelDNA/

    Chapter  Google Scholar 

  29. Dimitrov, R.A., Zuker, M.: Prediction of hybridization and melting for double-stranded nucleic acids. Biophysical Journal 87, 215–226 (2004)

    Article  Google Scholar 

  30. Rose, J.A., Deaton, R.J., Franceschetti, D.R., Garzon, M., Stevens Jr., S.E.: A statistical mechanical treatment of error in the annealing biostep of DNA computation. In: Special program in GECCO 1999, pp. 1829–1834 (June 1999)

    Google Scholar 

  31. Rose, J.A., Deaton, R.J.: The fidelity of annealing-ligation: A theoretical analysis. In: Condon, A., Rozenberg, G. (eds.) DNA 2000. LNCS, vol. 2054, p. 231. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  32. Rose, J.A., Deaton, R.J., Hayiya, M., Suyama, A.: The fidelity of the tag-antitag system. In: Jonoska, Seeman (eds.) [66]

    Google Scholar 

  33. Rose, J.A., Deaton, R.J., Hagiya, M., Suyama, A.: An equilibrium analysis of the efficiency of an autonomous molecular computer. Physical Review E 65(021910) (2002)

    Google Scholar 

  34. Rose, J.A., Hagiya, M., Suyama, A.: The fidelity of the tag-antitag system II: Reconcilation with the stringency picture. In: Proceedings of the Congress on Evolutionary Computation, p. 2749 (2003), NucleicPark is available at: http://hagi.is.s.u-tokyo.ac.jp/johnrose/

  35. Rose, J.A., Deaton, R.J., Franceschetti, D.R., Garzon, M., Stevens Jr, S.E.: Hybridization error for DNA mixtures of N species (1999), http://engronline.ee.memphis.edu/molec/Misc/ci.pdf

  36. Rose, J.A., Suyama, A.: Physical modeling of biomolecular computers: Models, limitations, and experimental validation. Natural Computing 3(4), 411–426 (2004)

    Article  MathSciNet  Google Scholar 

  37. SantaLucia Jr., J., Hicks, D.: The thermodynamics of DNA structural motifs. Annual Review of Biophysics Biomolecular Structure 33, 415–440 (2004)

    Article  Google Scholar 

  38. Hartemink, A.J., Gifford, D.K.: Thermodynamic simulation of deoxyoligonucleotide hybridization for DNA computation. In: Rubin, H., Wood, D.H. (eds.) Preliminary Proceedings of DNA Based Computers III, DIMACS Workshop 1997, Philadelphia, PA, pp. 15–25. University of Pennsylvania (1997)

    Google Scholar 

  39. Alexander, J., Hartemink, D.K., Khodor, J.: Automated constraint-based nucleotide sequence selection for DNA computation. In: Kari, L., Rubin, H., Wood, D.H. (eds.) DNA Based Computers IV, DIMACS Workshop 1998, University of Pennsylvania: Philadelphia, PA, October (1999), Biosystems vol. 52(1-3), pp. 227–235. Elsevier, Amsterdam (1999)

    Google Scholar 

  40. Nishikawa, A., Yamamura, M., Hagiya, M.: DNA computation simulator based on abstract bases. Soft Computing 5(1), 25–38 (2001)

    Article  MATH  Google Scholar 

  41. Mathews, D.H., Turner, D.H.: Dynalign: An algorithm for finding the secondary structure common to two RNA sequences. Journal of Molecular Biology 317(217), 191–203 (2002)

    Article  Google Scholar 

  42. Dirks, R.M., Pierce, N.A.: An algorithm for computing nucleic acid base-pairing probabilities including pseudoknots. Journal of Computational Chemistry 25, 1295–1304 (2004)

    Article  Google Scholar 

  43. Andronescu, M., Aguirre-Hernandez, R., Condon, A., Hoos, H.H.: RNAsoft: a suite of RNA secondary structure prediction and design software tools. Nucleic Acids Research 31(13), 3416–3422 (2003); RNAsoft is available at: http://www.rnasoft.ca/

    Article  Google Scholar 

  44. Mathews, D.H., Disney, M.D., Childs, J.L., Schroeder, S.J., Zucker, M., Turner, D.H.: Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proceedings of the National Academy of Sciences of the USA (PNAS) 101(19), 7287–7292 (2004); The free energy nearest neighbor parameters are available at: http://rna.chem.rochester.edu/ , RNAstructure is available at: http://128.151.176.70/RNAstructure.html

    Article  Google Scholar 

  45. Hofacker, I.L.: Vienna RNA secondary structure server. Nucleic Acids Research 31(13), 3429–3431 (2003); Vienna Package is available at: http://www.tbi.univie.ac.at/~ivo/RNA/

    Article  Google Scholar 

  46. Peyret, N., Saro, P., SantaLucia Jr, J.: HyTher server. HyTher Version 1.0 is available at: http://ozone2.chem.wayne.edu/

  47. Peyret, N., Seneviratne, P.A., Allawi, H.T., John, S.J.: Nearest-neighbor thermodynamics and NMR of DNA sequences with internal A-A, C-C, G-G, and T-T mismatches. Biochemistry 38, 3468–3477 (1999)

    Article  Google Scholar 

  48. Le Novère, N.: MELTING, computing the melting temperature of nucleic acid duplex. Bioinformatics 17(12), 1226–1227 (2001); Melting is available at: http://www.ebi.ac.uk/~lenov/meltinghome.html

    Article  Google Scholar 

  49. Blake, R.D., Bizzaro, J.W., Blake, J.D., Day, G.R., Delcourt, S.G., Knowles, J., Marx, K.A., SantaLucia Jr., J.: Statistical mechanical simulation of polymeric DNA melting with MELTSIM. Bioinformatics 15(5), 370–375 (1999)

    Article  Google Scholar 

  50. MeltWin. MeltWin is available at: http://www.meltwin.com/

  51. Flamm, C., Fontana, W., Hofacker, I.L., Schuster, P.: RNA folding at elementary step resolution. RNA 6, 325–338 (2000); Kinfold is available at: http://www.tbi.univie.ac.at/~xtof/RNA/Kinfold/

    Article  Google Scholar 

  52. Garzon, M., Deaton, R.J., Rose, J.A., Lu, L., Franceschetti, D.R.: Soft molecular computing. In: Proc. DNA5-99 Workshop. AMS DIMACS Series in Theoretical Computer Science, vol. 54, pp. 91–100 (2000); EdnaCo is available at: http://zorro.cs.memphis.edu/~cswebadm/csweb/research/pages/bmc/

  53. Visual OMP (Oligonucleotide Modeling Platform), DNA Software, Inc. Visual OMP is available at: http://www.dnasoftware.com

  54. The DNA and Natural Algorithms Group. DNA design toolbox. DNA Design Toolbox is available at: http://www.dna.caltech.edu/DNAdesign/

  55. Kim, D., Soo-Yong, S., In-Hee, L., Byoung-Tak, Z.: NACST/Seq: A sequence design system with multiobjective optimization. In: Hagiya, Ohuchi [64], pp. 242–251

    Google Scholar 

  56. Ruben, A.J., Freeland, S.J., Landweber, L.F.: PUNCH: An evolutionary algorithm for optimizing bit set selection. In: Jonoska, Seeman (eds.) [66], pp. 150–160

    Google Scholar 

  57. Bishop, M., Macula, A.J., Pogozelski, W.K., Renz, T.E., Rykov, V.V.: SynDCode: Cooperative DNA code generating software. In: Carbone, et al. (eds.) [63], p. 391

    Google Scholar 

  58. Pogozelski, W.K., Bernard, M.P., Priore, S.F., Macula, A.J.: Experimental validation of DNA sequences for DNA computing: Use of a SYBR green assay. In: Carbo, et al. (eds.) [63], pp. 322–331

    Google Scholar 

  59. Yin, P., Guo, B., Belmore, C., Palmeri, W., Winfree, E., LaBean, T.H., Reif, J.H.: Tilesoft: Sequence optimization software for designing DNA secondary structures (January 2004), http://www.cs.duke.edu/~reif/paper/peng/TileSoft/TileSoft.pdf

  60. Deaton, R.J., Garzon, M.: Thermodynamic constraints on DNA-based computing. In: Păun, G. (ed.) Computing with Bio-Molecules, pp. 138–152. Springer, Singapore (1998)

    Google Scholar 

  61. Smith, W.D.: DNA computers in vitro and vivo. In: Lipton, R.J., Baum, E.B. (eds.) DNA Based Computers, DIMACS Workshop 1995. American Mathematical Society. Series in Discrete Mathematics and Theoretical Computer Science, vol. 27, pp. 121–185. Princeton University, Princeton, NJ (1996)

    Google Scholar 

  62. Landweber, L.F., Baum, E.B. (eds.): DNA Based Computers II, DIMACS Workshop 1996 (Princeton University: Princeton, NJ). Series in Discrete Mathematics and Theoretical Computer Science, vol. 44. American Mathematical Society (1999)

    Google Scholar 

  63. Carbone, A., Daley, M., Kari, L., McQuillan, I., Pierce, N. (eds.): DNA 2005. LNCS, vol. 3892. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  64. Hagiya, M., Ohuchi, A. (eds.): DNA 2002. LNCS, vol. 2568. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  65. Ferretti, C., Mauri, G., Zandron, C. (eds.): DNA 2004. LNCS, vol. 3384. Springer, Heidelberg (2005)

    Google Scholar 

  66. Jonoska, N., Seeman, N.C. (eds.): DNA 2001. LNCS, vol. 2340. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  67. Schuster, P.: Counting and maximum matching of RNA structures (preprint, January 2004) (accessed, 2/1/2005), http://www.tbi.univie.ac.at/~pks

  68. Watson, J.D., Hopkins, N.H., Roberts, J.W., Steitz, J.A., Weiner, A.M.: Molecular Biology of the Gene, 4th edn. Benjamin/Cummings, Menlo Park, CA (1988)

    Google Scholar 

  69. Kubota, M., Hagiya, M.: Minimum basin algorithm: An effective analysis technique for DNA energy landscapes. In: Ferretti, et al. (eds.) [65], pp. 202–213

    Google Scholar 

  70. Tinoco Jr., I., Sauer, K., Wang, J.C., Puglisi, J.D.: Physical Chemistry: Principles and Applications in Biological Sciences, 4th edn. Prentice Hall, Englewood Cliffs (2002)

    Google Scholar 

  71. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell, 4th edn. Garland, New York (2002)

    Google Scholar 

  72. Schuster, P., Stadler, P.F., Renner, A.: RNA structures and folding: From conventional to new issues in structure predictions. Current Opinion in Structural Biology 7(2), 229–235 (1997)

    Article  Google Scholar 

  73. Turner, D.H., Sugimoto, N., Freier, S.M.: RNA structure prediction. Annual Review of Biophysics and Biophysical Chemistry 17, 167–192 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sager, J., Stefanovic, D. (2006). Designing Nucleotide Sequences for Computation: A Survey of Constraints. In: Carbone, A., Pierce, N.A. (eds) DNA Computing. DNA 2005. Lecture Notes in Computer Science, vol 3892. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11753681_22

Download citation

  • DOI: https://doi.org/10.1007/11753681_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34161-1

  • Online ISBN: 978-3-540-34165-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics