Skip to main content

Generation of Dynamic Heart Model Based on 4D Echocardiographic Images

  • Conference paper
Computational Science and Its Applications - ICCSA 2006 (ICCSA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3984))

Included in the following conference series:

Abstract

One of the most challenging problems in the modern cardiology is a correct quantification of the left ventricle contractility and synchronicity. Correct, quantitative assessment of these parameters, which could be changed in a course of many severe diseases of the heart (e.g. coronary artery disease and myocardial infarction, heart failure), is a key factor for the right diagnose and further therapy. Up to date, in clinical daily practice, most of these information is collected by transthoracic two dimensional echocardiography. Assessment of these parameters is difficult and depends on observer experience. However, quantification method of the contractility assessment based on strain and strain analysis are available, these methods still are grounded on 2D analysis. Real time 3D echocardiography gives physicians opportunity for real quantitative analysis of the left ventricle contractility and synchronicity. In this work we present a method for estimating heart motion from 4D (3D+time) echocardiographic images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Montagnat, J., Delingette, H.: Space and time shape constrained deformable surfaces for 4D medical image segmentation. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 196–205. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  2. Papademetris, X., Sinuas, A., Dione, D., Duncan, J.: Estimation on 3D left ventricular deformation from echocardiography. Medical Image Anal. 5(1), 17–28 (2001)

    Article  Google Scholar 

  3. Montgant, J., Sermesant, M., Delingette, H., Malandain, G., Ayache, N.: Anisotropic filtering for model-based segmentation of 4D cylindrical echocardiographic images. Pattern Recognition Letters 24, 815–828 (2003)

    Article  Google Scholar 

  4. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. On Pattern Anal. and Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  5. Weickert, J.: Anisotropic diffusion in image processing. G. G. Teubner, Stuttgart (1998)

    Google Scholar 

  6. Sederberg, T., Parry, S.: Free form deformation of solid geometric models. Computer Graphics 20(4), 151–160 (1986)

    Article  Google Scholar 

  7. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Non-rigid registration using free-form deformations: Application to breast MR images. IEEE Transactions on Medical Imaging 18(8), 712–721 (1999)

    Article  Google Scholar 

  8. Studholme, C., et al.: An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognition 32(1), 71–86 (1999)

    Article  Google Scholar 

  9. Shannon, C.E.: A mathematical theory of communication. Bell System Technical Journal 27, 2790423, 623–656 (1948)

    Google Scholar 

  10. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C, 2nd edn. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  11. Huang, X., Metaxas, D., Chen, T.: MetaMorphs: Deformable shape and texture models. In: IEEE Computer Vision and Pattern Recognition, Washington, D.C. (June 2004)

    Google Scholar 

  12. Monga, O., Deriche, R., Malandain, G., Cocquerez, J.P.: Recursive filtering and edge tracking: two primary tools for 3D edge detection. Image and Vision Computing 9(4), 203–214 (1991)

    Article  Google Scholar 

  13. Cohen, L.D., Cohen, I.: Finite-element methods for active contour models and balloons for 2-D and 3-D images. IEEE Trans. On Pattern Analysis and Machine Intelligence 15, 1131–1147 (1993)

    Article  Google Scholar 

  14. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1, 321–331 (1987)

    Article  Google Scholar 

  15. Paragios, N., Deriche, R.: Geodesic active regions and level set methods for supervised texture segmentation. International Journal of Computer Vision 46(3), 223–247 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chlebiej, M., Mikołajczak, P., Nowiński, K., Ścisło, P., Bała, P. (2006). Generation of Dynamic Heart Model Based on 4D Echocardiographic Images. In: Gavrilova, M.L., et al. Computational Science and Its Applications - ICCSA 2006. ICCSA 2006. Lecture Notes in Computer Science, vol 3984. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11751649_43

Download citation

  • DOI: https://doi.org/10.1007/11751649_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34079-9

  • Online ISBN: 978-3-540-34080-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics